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Abstract

We investigate the conservation properties of Hamiltonian systems in variational
data assimilation. We set up a four dimensional data assimilation scheme for the two-
body (Kepler) system using a symplectic scheme to model the non-linear problem. We
use our completed scheme to investigate the observability of the system and the effect
of different background constraints. We find that the addition of these constraints
gives an improved solution for the cases we have investigated.
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1 Introduction

Some features of atmospheric dynamics can be modelled using Hamiltonian methods. We
investigate whether the conservation properties of such systems can be exploited when
using data assimilation schemes. To do this we set up a full 4d variational (4D-Var)
data assimilation scheme for the simpler problem of planetary orbits, which also has a
Hamiltonian structure. The first section introduces variational data assimilation. We
then discuss the two-body problem in its continuous and discrete form. Section 3 shows
the results of our assimilation experiments.

1.1 4D Variational Data Assimilation



information at the initial time. In the first case we constrain the background model state
vector directly. In the second case this information is transformed to an energy thus
using the Hamiltonian property as a constraint. For the first of these we add to the cost
function a term of the form fi1(xb0 −x0)(xb0 −x0)T , for the second the constraint term is
fi2(E(xb0)− E(x0))2. Here fi1 and fi2 are parameters that allow the effect of each of the
terms to be controlled.

2 Modelling the Two-Body Problem

2.1 The Continuous Problem

The two-body problem is one of the simplest Hamiltonian problems. Instead of writing
the system as two particles of mass m1 and m2 in mutual orbit, we can set the origin at
the centre of mass. This reduces the problem to one particle of reduced mass „, where
„ = m1m2

m1+m2
, in orbit around one particle of total mass, m1 +m2. Our continuous equations

of motion can therefore be written as two first order, non-dimensional equations describing
the evolution of position, q = (q1; q2), and momentum, p = (p1; p2),

dq
dt

= p
dp
dt

= − q

(q2
1 + q2

2)
3
2

: (2)

2.1.1 Conservation Properties

The two-body problem has two conserved quantities, the Hamiltonian, E, which for this
problem is the total energy, and the angular momentum, L. These are given by,

E =
1
2

‡
p2

1 + p2
2

·
− 1

(q2
1 + q2

2)
1
2

= constant L = q1p2 − p1q2 = constant: (3)

These characteristics are intrinsic to the physical problem, and will provide a useful test
of the discretised equations.

2.2 The Discrete Problem

To test the effect of these conservation properties in the 4D-Var scheme it is essential
that they are captured by the discrete model. In recent years geometric integration has

Figure 1: Difference between the energy given by the model and the true energy for (a)
eccentricity, e = 0, and (b) e = 0:5
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attempted to address the issue of preserving global features, and in particular symplectic
methods are particularly good at conserving energy, and can also conserve angular mo-
mentum [3]. Following previous work on the two-body problem we use a second order,
symplectic, Runge-Kutta scheme known as the Störmer-Verlet method [4].

Figures 1(a) and 1(b) illustrate how well the model captures the energy conservation
for a circle (where eccentricity, e = 0) and an ellipse with e = 0:5. These figures show
the difference between the energy given by the model and the truth. For a circle this
difference is at a scale of 10¡14, and so here the scheme does well. However we see that if



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 2: Error between the optimal solution and the truth for e = 0 and assimilation
window t = 12:6, for (a) dense observations, and (b) sparse observations
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Figure 3: Error between the optimal solution and the truth using sparse observations
of momentum with (a) a background constraint, and (b) an energy constraint (e = 0,
assimilation window t = 12:6)

3.2.1 Constraint using xb

Here we alter the cost function and its gradient to include a background term. This means
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