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Abstract

A multidimensional upwinding technique is applied to the simula-
tion of 2D shallow water flows. It is adapted from fluctuation splitting methods
recently proposed for the solution of the Euler system of equations on unstruc-
tured triangular grids. The basis of the numerical method is stated and the
particular adaptation to the shallow water system is described. Numerical re-
sults of interest to hydraulic engineers are presented. Despite the complexities of
the scheme advantages related to the use of a discretisation based on triangles
would seem to make the schemes competitive with those currently in use.



1 Introduction

In reading the literature of recent years on the latest advances in numerical meth-
ods for hyperbolic conservation laws, one might gain the impression that many
more people worked on problems involving the Euler equations than on problems
concerning the shallow water equations. In practice, though, this is not the situ-
ation, with many more engineers, physicists and mathematicians being involved
in solving problems of the latter kind on a day to day basis.

Classical methods and central difference schemes still dominate the
commercial software products for this market, with Preissmann’s, Abbott’s (see
[4] for example) and McCormack’s [7] schemes the most commonly used. These
schemes are well known to require special treatment in many situations so that
the calculations may proceed.

Some years after their adoption for solving problems in gas dynam-
ics, upwind and TVD (Total Variation Diminishing) numerical schemes have been
successfully used for the solution of the shallow water equations, with similar ad-
vantages [8]. Their use is nevertheless only gradually gaining acceptance in this
sector.

Recently, in the context of gas dynamics, doubt has been expressed
as to whether the essentially 1D TVD schemes are the most suitable choice for
multi-dimensional calculations, and the search has been initiated for genuinely
multi-dimensional approaches. Most of these are based on piecewise constant
representations of the solution on triangular grids with a 1D upwinding of the
Riemann problem for each edge of the triangle. However, it has been claimed
that such an approach is weak when the solution is not constant along a triangle
edge, since it may misinterpret features which are not aligned with grid interfaces.

In a different philosophy, instead of concentrating on finite volumes
and the changes of the variables across the cell sides, Deconinck et al. [5] consider
solutions on triangular grids in which the unknowns are associated with the ver-
tices and updates to these nodal values are through the advection of linear wave
solutions. This avoids the problems of taking the normal to the cell interfaces as
a privileged direction.

Reference [5] is concerned with gas dynamics applications. In this
paper we consider the use of this technique for 2D shallow water flows and the
question of whether they may be of practical use. In the next sections, the ba-
sis of the numerical method is stated and the adaptation to the shallow water
system is described. The numerical treatment of the boundaries as well as the
inclusion of source terms in the governing equations are also discussed. Finally,
some numerical results are presented. Although this work is at an early stage,
our results indicate that the advantages may outweigh the disadvantages and that
these schemes may have a future for hydraulic engineering applications.



For the numerical solution of the 2D linear scalar equation
—+ =0 =(= ) (21)

with constant , we assume the given physical domain to be discretised by trian-
gular cells and a set of initial values ; stored at the nodes of the mesh. For each
cell T, of area 7, a cell fluctuation is defined as
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the technique.

Residuals and fluctuations are cell-based quantities which are going
to be used for the updating of the nodal values. For this purpose we introduce
distribution coefficients, %, defining the weightings of the residual to the nodes
in a cell. For conservation and consistency they must satisfy
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in every cell, see [5] for example. Then, a first order explicit time-stepping pro-
cedure at the nodes can be defined as

n+1 __ n é
7 - 1 ] T
3 T;

(28)

g
NS

where the sum is over all the cells meeting at node , and where ; = % T T
In order to focus on the individual cell treatment, the advection scheme can be

expressed, on each triangle, as
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where only the influence from the individual triangle has been included.

There exist many criteria for the design of advection schemes, de-
pending on the choice of the distribution coefficients. Two properties are of inter-
est, positivity and linearity preservation of the scheme. The former is related to
the 1D property of monotonicity whilst the second has to do with the accuracy of
the method. Unfortunately, their simultaneous requirement is incompatible with



If the equation to be solved is non-linear, a suitable linearization
must be performed before the techniques described for the linear equation are
applied. Given the non-linear equation

where

the fluctuation is defined as
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Where, in particular, a consistent approximation for the cell residual is sought

r=(A,B)r T (2.10)

where Ar, By are discrete equivalents of the cell averaged Jacobian matrices, cal-
culated using the nodal values. The assumption of linear variation of  on each
cell, enables us to write
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where discrete cell gradients and cell Jacobians can be defined in the same form
as for the scalar case
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Unfortunately, the exact evaluation of the above integrals is not practical either
for the Euler or for the shallow water equations. Roe [13] suggested the introduc-
tion of a parameter set of variables for a simpler treatment of the former system.
The strategy we have followed for the shallow water equations makes use of the
set of primitive variables and is described in the next section.

We begin this section by writing the homogeneous version of the system of equa-
tions in terms of the conserved variables,

= (h, uh , vh)T, (3.1)
where and are the depth and and velocities respectively, that is,
—+ —+—=0 (32)

where the fluxes are,



wh vh
E=| «2h+ s:zﬁ , F= uvh E
uvh v2h + %

It can be rewritten in terms of the same variables but in a non-conservative form

as,

oU U U
G tAg t85, =0 (3.3)

in which the two Jacobian matrices are
OE 20 1 0 OF 0 0 1
A:a—U: —u+gh 2u 0 ,B:a—U: —uv vou |
—uv voou —vidgh 0 20

As mentioned earlier, it will be useful later on in the paper to express the equa-
tions in terms of the primitive variables

V=0,u, vl (3.4)

in a non-conservative way, as follows,
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where the new matrices GG and H are,

v 0 h
G: 7H: 0 v 0 .
g 0 v

It is worth noting that the transformation matrix, M, has the form

ou 1 8
= — = U .
oV . b

In the conservative formulation, the fluctuation is defined as
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We can use the relation between the two sets of variables to define new matrices

R and S,
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so that:
E,+F,=EyV,+F,V,=RV,+5V,.

Provided that the variables V are linear over the cells T, the gradients, V, and
V,, are constant, and this enables us to write the fluctuation as

o1 = ~([ (ROV)V. + S(V)V,)ds
= —(/T(R(V)dS)Vx - (/T(S(V)dS)Vy
= —S7[RV,+5V,] (3.7)

with the definitions:
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We now replace R, S by
R=R(V), S=S(V) (3.9)
where the averaged variables are simply
- h 1 hy + hy + hs
v v1 + v + U3

summing over the nodal values at the vertices of the triangle T. Note that with
this definition of R, S we are only approximating equation (3.8), unlike in the
Euler equations where an exact representation of the integral is obtained because
in this case R is linear in V.

We are seeking a conservative discrete approximation of the Jaco-
bians satistying

(&7 =) — Sr(E, + F,) = —Sr(AU, + BU,). (3.11)

From (3.7) it is easy to identify

= RV,
SV,. (3.12)
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Moreover, we can use the change of variables to define

S;U, = /T U, dS = /T M(V)V,dS = St M(V)V,
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so that

with similar expressions for , and . This can be used to rewrite the fluctua-
tion in terms of suitable averages of the conserved variables,
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and

_d
T
it follows from (4.1) that
Aec;fﬂ +  )—=0
which means that % are the right eigenvectors of the matrix
=+ (42)

and 4 the corresponding eigenvalues.

It is then possible to express the gradient as the sum

k=1
that is,
_ ok k
k=1
"k k
)=
k=1
The vectors * are the right eigenvectors of the matrix — *:
1 1 0
1 — g 2 — g no_ (4 4)
g g

The variables * represent weighting coefficients of the sum and * are the differ-
ent angles of each wave. The celerity, , is the equivalent of the speed of sound
in gas-dynamics and is the velocity of small perturbations in still water, given by

The connection expressed in (3.13) between the gradient of the
primitive variables and that of the averaged conservative variables can be used
to develop the latter as
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where now, ¥ represent the right eigenvectors of the matrix

4
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and can be worked out through * = () *. It is worth noting here that the

two matrices * and  * share the unique set of eigenvalues, *,
b=+ 4
2 _ - 4
= - + (4.5)

The residual then can be split into a sum of waves
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be defined in terms of the solution as
T .
6 =0 " sign(5)

Making use of the equivalences of the basic trigonometric functions to those of the
first quadrant of the unit radius circle, the system (4.7) can be explicitly written

as follows:

Oh . .

9 = 10080 — ayc0s8 — assind + aysinb
x

Oh . .

Ell aysint — aysint + ascos8 — aycosd
Y

du g 2 2 2 ) .

e Zlagcos“l + agcos 0 + azsin®d + aysin“f] — Bsingcosd
x c

0

a—u = “[aysinfcost + aysinfcost) — assinfcosld — aysinfcosh] — Bsin’d
Yy c

av g . . . . 2

g = Zlagsinfcosh + azsinbcosd — azsinfcostd — aysinfcosl] + feos e
x c

0

a—v = g[alsinze + aysin?0 + ascos?0 + oz40052(9] + Bsingcosd. (4.8)
Yy c

The solution of the above algebraic system is easily found giving, for the coeffi-
cient of the shear wave,

B = |Blsign(B) = ve — uy. (4.9)
The identities

B(cos*¢ — sin’¢) = | 3| sin20
20singcosg = — | 3] cos20

are helpful in combining the derivatives as

Uy + vy = [g(ozl + ay — az — ay) + |F]]sin26

c
Uy — Uy = [%(ozl + az — az — aq) + | F]]cos26
so that N
U, + v
tan20 = 24—~ (4.10)
Uy — Vy

Further manipulations of the derivatives lead us to

1
U, 08l — v,sin*0 = [g(ozl +ay) + 5 |3]]cos20
¢
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and
hycost + hysinf = a; — ag,

hence, to the values

¢ uzcos?t — v, sin’f

1 , 1
a; = §[hx0050 + hysinf + ;( Y, —5 18])] (4.11)
1 . ¢ uycost) — v, sin?l 1
ay, = 5[—(/11,0030 + hysind) + ;( c0520y ~3 18], (4.12)
A similar procedure gives
1 ) ¢ v,c08°0 —uysin? 1
as = §[hyc03(9 — hysinf + ;( v e20 + 3 18])] (4.13)
c vy00320 — u,sin’f

1 , 1
ay = 5[—(/11/0030 — hysinfd) + ;( + 5 16])].  (4.14)
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4.2 Rudgyard’s wave models

These are mainly based on the idea of obtaining the six waves by choosing two,
in principle, arbitrary propagation angles, #; and 65, and performing a decompo-
sition of the gradient,

3 3
VV =Y agriing + > ag,ring (4.15)
k=1 k=1

which contains six free parameters, the six a coefficients. The vectors ny =
(cosl,sinb) are again the unit vectors in the directions 0, and r§ are the right
eigenvectors of the matrix M* for each value of §. In order to solve for the un-
knowns, use is also made of the left eigenvectors of that matrix

1 1 0
2 2
]g, — %cos@ 7 13 = —icOS@ , 13 =] —sind (4.16)
isin@ —isin@ cosf)

and of the unit vector normal to ny

sg = (—sind, cosh).

Multiplication of (4.16) on the left by 13, and the left projection over sy, gives

S@Q.(lél.VV) = Oéél(SQQ.ngl), (417)

where the property 19 - I'Z, = ¢;; and the orthogonality between vectors s and n
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with M? = “1%”2 representing the Froude number in this case. This technique
gives very good results in gasdynamics problems for supersonic flows but is not
directly applicable to the subsonic case. It can nevertheless be adapted for sub-
sonic (subcritical in our case) flows by replacing M?* — 1 with max(|M? — 1], ¢),
the tolerance e taking a typical value of 0.1.

5 Numerical Results

The treatment of the solution at the points on the boundaries of the domain has
been kept as close as possible to the theory of characteristics in 2D. In all cases,
the number of physical conditions to be imposed has been determined by this
theory. This number is defined [6] by the signs of the eigenvalues A of the matrix

K = An, + Bn, (5.1)

where the boundary normal vector n is the unit vector pointing into the domain.
The eigenvalues are associated with the celerities of the waves. Hence, when A
is positive, the information travels along the normal, into the domain. When it
is negative, the information goes against the normal, that is out of the domain.
The subcritical cases are the most illustrative, having, at a subcritical inlet for
instance, u-n > 0 and u-n < ¢, so that,

)\1:un<0
AM=u-n+c>0

AM=u-n—-c<0.

This means that there are two waves from outside and therefore, two bound-
ary conditions have to be imposed. The wave from inside produces a numerical
boundary condition. In an analogous manner, the case of a subcritical outlet
requires only one imposed external boundary condition. The information that
travels from inside the domain is determined by the compatibility relations which
can be written for arbitrary propagation directions from the 2D theory of charac-
teristics. These have been simplified by assuming that the derivatives along the
direction tangential to the boundary are negligible. In the case of a material wall
boundary, a zero normal velocity is imposed and the depth as well as tangential
velocity are calculated from the compatibility conditions.

For the interior points we used the non-linear PSI advection algo-
rithm [10] for all the test cases following but obtained very similar results with
the other advection schemes. As for the wave model, the calculations correspond
to Rudgyard’s decomposition having been found more robust, in general, than
the one corresponding to Roe’s model D.

15



With numerical schemes it is highly desirable to be able to check their predic-
tions against suitable test problems, preferably ones for which an exact solution
is available. Such is the case for the example below, computed by a finite volume
method by Alcrudo and Garcia-Navarro [1], in which an oblique hydraulic jump



and unlike in the case of the Euler equations, most practical problems involving
the shallow water equations are time-dependent, so this problem also tests the
temporal accuracy of the method. The treatment of the source terms was done
simply by calculation of the functions at the vertices of every cell, including these
values in the updating at every time level, that is, in a pointwise manner.

The channel is 21m long and 1.4m wide at it widest part. It has

a uniform bottom slope ¢, along the direction of the main flow. The rough-

ness of the surface (smooth steel-glass) is represented by a Manning’s coefficient

=0.012. Measured data of the water levels as a function of time were available

at five positions along the centreline of the flume. The points of measurement
are shown in Fig. 5

A dam is placed in the constriction, at = 8.5m from the ori-
gin, where the width is 0.6m. The discontinuous initial conditions consist of a
horizontal surface level on the upstream side, with a depth of 0.3m just behind
the dam, and a uniform water depth downstream. All velocities are initially set

Ox



followed that of the researchers solving the Euler equations (with both the advec-

tion schemes and wave models) showing the same properties as for that system
of equations.

Although the procedure is more complicated and costly than present
day generalizations of 1D upwinding techniques it is based on a triangular dis-
cretization and, by taking advantage of the triangles, the disadvantages can be
overcome making the schemes very competitive, and the future for them then
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Figure 1: Map of level lines from the numerical result obtained in the 2400
elements grid

Figure 2: 96 elements initial grid used for the oblique jump test case.
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Figure 5: Unsteady flow through a converging diverging channel. Geometry and
points of measurement
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Figure 6: Test case Sy, =0.0, hy =0.3m, hy =0.053m. Continuous line: Predicted
values. Circles: Measured values. Section 2

Figure 7: Test case Sy, =0.0, oy =0.3m, hy; =0.053m. Continuous line: Predicted
values. Circles: Measured values. Section 3
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Figure 10: Test case Sg, =0.01, hy =0.3m, hy =0.0m. Continuous line: Predicted
values. Circles: Measured values. Section 2

Figure 11: Test case Sg, =0.01, hy =0.3m, hy =0.0m. Continuous line: Predicted
values. Circles: Measured values. Section 3
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Figure 12: Test case Sg, =0.01, oy =0.3m, hy =0.0m. Continuous line: Predicted
values. Circles: Measured values. Section 5

Figure 13: Test case Sg, =0.01, hy =0.3m, hy =0.0m. Continuous line: Predicted
values. Circles: Measured values. Section 6
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