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Abstract

The semi-Lagrangian method is widely used in numerical weather models. The
properties of the numerical solutions obtained by this method, depend strongly
on the form of spatial interpolation used. In this report, several commonly used
interpolants are reviewed and Fourier analysis is applied to the resulting schemes.
Error measurements for the advection of more general data are then established,

which build on the results of the Fourier analysis.
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This report has two aims. The first is to describe the semi-Lagrangian method.
This is an approach to the generation of finite difference schemes for problems

involving advection. The importance of this method lies in the fact that it allows



for some standard schemes are given for comparison.



1 The Semi-Lagrangian Method

The semi-Lagrangian method is a finite difference technique for the numerical
modelling of advection, [8]. It achieves the redistribution, of a transported quan-
tity, by solving local fluid trajectories over each time step. First it is necessary
to consider the Lagrangian description of fluid flow. Following this, an overview

of the two time-level semi-Lagrangian method is given.

1.1 Lagrangian Description

Let u(x,t) be some property of the fluid and let a(x,t) be the velocity field of
the fluid. Passive transport of the quantity u is described by the one dimensional

advection equation :

ou ou
Stz =0 (1.1)

This equation may be written in terms of the Lagrangian (or convective) deriva-

tive,
0 n 0
- = a—
t Ot ox’
when it becomes
u
— = 0. 1.2
: (12

The Lagrangian derivative (1.2) provides the time rate of change, of the value
of u, associated with any one particular fluid element. Such a fluid element is
uniquely identified by specifying its position, z, at some reference time, ... If
y(x,t,;1) is the position of this fluid element at time ¢, then the trajectory of

the element is given by the equation,

dy
i a(y,t). (1.3)
1.2 Two Time-Level Scheme

The finite difference solution of (1.2) is to be established on an Eulerian mesh

with uniform space and time intervals, Az and At respectively. Grid nodes are



at the positions x; = jAx and the solution is to be advanced through successive
time intervals, ¢, = n/At where n = 0,1,2,---.

Let U(x,t) be an approximate solution of (1.2) obtained numerically. If U is
known up to the time level ¢, then it is advanced to the next time level using a

discretization of (1.2). For a two time-level scheme [1] this discretization is

U(xjv tn-l—l) - U(?J(l']a tn-l—l; tn)a tn)
At

= 0. (1.4)

where y(x;,t,41;t,) is the position of the fluid trajectory at time ¢, described

below. So at time #, 4, the value of U at the grid node z; is given by

This important equation is the basic statement of the semi-Lagrangian method.

Equation (1.2) states that, for any chosen fluid element, the value of u does
not change with time. Equation (1.5) is the discrete equivalent of this : the value
of U held by the fluid element at (x;,%,41) is exactly that which it held at the
earlier time ¢,. In order to find this value of U, it is first necessary to discover
the position, y(x;,t,41; 1), of the particle at time t,. This position is known as
the upstream departure point. It is found by performing an integration of the
trajectory equation (1.3).

The simplest choice of integration is the Euler method. For this particular

problem it takes the form,

y(wj,tn+1; tn+1) - ?J(%atnﬂ; tn)
At

= a(y(zj, tup1; tas)s Ln)- (1.6)
Using the identity,
y(xjv tn-l—l; tn-l—l) = Zj,
equation (1.6) results in the displacement formula :
y(zj, togrity) = x; — At a(xj, ty,).

In practice the Euler method is considered too inaccurate, but ordinary differen-
tial equation solvers of higher order can be applied to (1.3) in an entirely analogous

way, [8].



The upstream departure point, once found, will generally not coincide with a
grid node. Yet it is only at the nodes that a finite difference solution exists. This

raises the need for interpolation to evaluate U(y,1,).

A finite difference method provides values of the approximate solution U(x,t) only
at grid nodes, x;. To obtain a value between nodes, any form of interpolation
might be used. If a polynomial interpolant is chosen, then the scheme falls into
a class of schemes particularly well suited to analysis. These are the explicit
polynomial schemes considered in the next section of this report. First a number

of interpolation options of practical importance are considered here.

This is the simplest form of polynomial interpolation. A small subset of grid
nodes is selected, which surround the point at which an interpolated value is
required.

Assume that the upstream departure point, y, lies between nodes & 1 and

k. That is

Lh-1 Y Tk
Take a sample set of p nodes either side of the interval [xg_1, 4] :
p = Lhk—p, Th—p+1, y Lhtp—1 -

Let 5,-4 be the unique polynomial of degree 2p 1 which interpolates the finite

difference solution at all the pointsin . Let u; = U(z;,t,) and v/ = U(xj, t,41),

then
p—1
2p—1( k—p k+p—-1  k-p k4+p—1; ): k+r 7
r=—p
where
p—1
. o k+s
r( k=p ktp-1 ) = — (17)
s=—p k+s k47
SET



For a constant velocity field, the velocity is simply displacement over time,

= (18)

This provides the following useful formula for the Courant number :

The set , is centred on the interval [ 4—1 ], which contains the departure
point . As a consequence always lies within one grid interval, ,of ;. Now

equation (1.7) indicates that the interpolation is built up of differences between

r (and surrounding nodes) and . So if the Courant number is restricted to
lie between 0 and 1, then there is no loss of generality putting = . A further
simplification of the equations results by remembering that ; = . Redefining

the polynomial in terms of the Courant number, it may now be written

p—1 p—1

_I_

( n)= 2p-1() o —
T=—p S=—p
SET

where 0 1.

Only polynomials of degree 2 1 have been considered. Even degree poly-
nomials are constructed in the same way. However it is not possible to centre
the sample set about the upstream departure point : an even degree polynomial
requires an odd number of data points. Stable schemes can still be constructed
by choosing the sample set correctly. There are two possibilities of sample set for

a second degree polynomial. Both lead to stable schemes. These are the uncon-
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The cubic spline is formed using approximations, ¢;, for the second derivative
at grid points [4] :
0*U

These derivative estimates are related to the finite difference solution by the

formula,

1 1
(1+652) ¢ = - §%u;, (1.9)

20— o _ . .
where 6“u; = w41 — 2u; + uj_q.

The cubic spline polynomial is

Uy, t,) = S3(v) = —Az? (CJ_GCJ_I) v 4+ Az? % v? (1.10)

1
—NAz? AR 6(20j +ecjo1)| v+ u;

1.3.5 Fourier Analysis of the Cubic Spline

As an example of the type of analysis used in this report, Fourier transforms are
applied to equations (1.9) and (1.10). Equation (1.9) involves the step operator
FE. The effect of the Fourier transform on this is to introduce the multiplicative
factor e7'*, where ¢ = k/Az and k is the independent variable of the transform.
Let U and C be the Fourier transforms of U and C, which are related by

1

e §*U(x,t,).

(1 + é&?) Clas b)) =

The transform of this equation is
CAz? = Mo)U

3
where  A(¢) = 6 (1 — 2—|—cos¢) :

A transform equation may be obtained for (1.10) in a similar way :

Uk, tot1) = g(o, V)U(kv tn)

where glo,v) = —M(l — e 4

6
o .
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2 Analysis of Finite Difference Schemes for Ad-

vection

2.1 Test Problem and its Discretization

In order to analyse the performance of a numerical solution scheme, a suitable
test problem is required. This is usually taken to be the simplest differential
equation whose solutions exhibit the process which is of interest. In the case of

advection the following test problem is chosen :

Ju Ju

where u = u(x,t) and a > 0,
) —o0 < x <X
on the domain D :
t >0.
The choice of initial condition is dictated by the form of the analysis which is to
be carried out. The simplest possibility is considered in section 2.4 and slightly
more realistic data will be considered in section 2.5.
To establish a finite difference approximation for this problem, the domain

must first be discretized. The following mesh, which is regular in both space and

time, is used :
M(Ax, At) = {(jAx,nAt) : j € Z,n € N},
where Ax and At are the space and time grid intervals respectively. Now let
z;=jAx and t, =nAt, (2.12)
and let u? be the finite difference solution at the mesh point (z;,?,). That is,
ul R u(ag,ty). (2.13)

The time evolution of the finite difference solution is governed by a numerical
scheme, which is obtained from some consistent discretization of the equation

(2.11). One class of schemes will be considered.
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The schemes of this class have the general form,

e () (2 14)

Y

where

J J+1

TS



where the last line follows from = ——. Using the space step operator ., the
above may be written,
(;  » 0) = 7 (; a0
= (W (2.17)

where the final line is obtained from the analytical solution (2.16). Hence the

evolution equation for the exact solution of (2.11) is

(; ot )= "7"0; ) (218)
This equation identifies the evolution operator for the exact solution, on the mesh

~¥. It corresponds to linear wave motion; during one time step, it shifts the

solution through a distance determined by the mesh velocity . The evolution

ikx

0 ik



For the above initial data the exact solution of (2.11) is a sinusoidal progressive
wave. Such a wave is precisely specified by just two parameters (the wavenumber

k and the wave velocity a) and takes the form
U(l’, t) — eik(ac—at)‘

If this solution is restricted to the mesh M(Ax, At), then the relevant parameters

are the mesh dependent counterparts of k£ and a, that is ¢ and v :
u(wj,t,) = U, (2.20)

The space and time parts of this solution are separable allowing the solution to

be written as

w(xi t,) = (e79)" %, 2.21
J

The quantity e~ is the amplification factor for the exact solution. It is obtained

by the action of the exact evolution operator, £~ on the Fourier wave e'® :

E—uemS — ei(l—u)¢ —

e~ 0,

The parameters ¢ and v also determine the finite difference solution. They
enter the solution through the action of the evolution operator, C(F, v) as follows.

Using (2.14) and (2.19) the solution after the first time step is

ut =C(E,v) e,

J

This may be expanded using (2.15),

C(E,v) i’ = > e(v) ET e'?

= > e (v) cilitr)d
et Z ¢ (v) e’?.

The summation in the last line may be written in terms of the polynomial C,
which leads to

u; = €Y% C(e, v).
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So far only waves composed of a single frequency have been considered. A more
realistic approach is to consider the advection of a periodic wave, which contains
a superposition of frequencies. (For instance the initial data may be chosen to
be a square or triangular wave.) This allows the possibility of analysing such
phenomena as dispersion and frequency dependent attenuation. However the
approach which will be made here, is to look for measurements of amplitude and

phase error averaged over all frequency components.

At time ,, let the data take the form

o0

where are the Fourier weights and , the wave numbers of the component
Fourier modes.

When the solution is advanced one time step using (2.14), the linearity of the
scheme results in each Fourier mode being separately advected :

o0

n+1 iy
]‘ T
r=—00
o0
1y
”
r=—00
o0 o0

1y 1y

T T T
r=—00 r=—00



The chosen measure of phase error is simply a weighted sum of the phase errors

for each Fourier component :

o0

|O‘T(tn)|2 {arg[g((/ﬁm V)] - (_V¢T)}2
E (v)="= — : (2.27)
|O‘T(tn)|2

r=—00

The corresponding weighted amplitude error would appear to be of little use;
it is symmetric about the stability limit |¢| = 1. However, by making use of
Parseval’s Theorem, the conserved fraction (defined below) of the second moment

of the solution may be obtained.

Consider an infinite periodic wave with wavelength 21 :

o0

It f(l') — a, eirwx/[
T
en o ¥ x)° dx = Q,

under suitable conditions on f(x).

Let U(x,1,) be the continuous extension of the finite difference solution, where

the index j is replaced by «/Ax :

Ulx,t,) = R (2.28)

r=—00

and let
L
M, = Uz, t,)* da.
-L
If the wavelength is 2 then Parseval’s Theorem provides the following :

M, =2L a2 (2.29)

When the evolution operator C(FE,v) is applied to (2.28), each Fourier mode

produces an amplification factor :

Uz, t, + At) = o, g(é,,v) pidre/ Do

r=—00
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Applying Parseval’s Theorem to this gives
My =21 Z |ar 9(457“7 V)|2' (2'30)

Define the conservation fraction per time step for the second moment :

M, 11

Cn(v) = M

From (2.29) and (2.30) this is seen to be

o0

> len(t)l® lg(r, )|
C.v) = =" (2.31)
_Z_: |O‘T(tn)|2

For linear advection with a constant velocity field, all the finite difference
schemes considered in this report provide perfect conservation of mass. The
second moment is not necessarily conserved : non-conservation is a result - though

not a necessary one - of changes in the shape of the advected mass distribution.

2.5.4 Convergence of E,(v) and C,(v)

Convergence of the summations in (2.27) and (2.31) follows from a property of the
Fourier expansion, namely, that 3" |a,| converges. Convergence of C, is ensured
since |¢g| < 1, for any stable scheme.

There is a slight problem involved in the calculation of E,(v). Care must
be taken in the calculation of arglg(é,,v)] + v¢,, which is the phase error in
the amplification factor for Fourier mode e¢'*". The problem arises when v¢, is
outside the range of the arg function, since it is then necessary to find the winding
number for ¢(¢,, ). However, this may be side-stepped by recalling that waves
with wavenumbers ¢ and ¢+ 27 are indistinguishable on the grid. This allows the
phase error to be mapped onto the interval (—m, x| by the addition/subtraction
of multiples of 27. Provided the scheme is known never to produce phase errors
exceeding 27, then the above procedure provides the correct phase error. This is

the case for all the schemes to be considered here.
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2.5.5 Courant Average

By averaging C,(v) and E,(v) over the range 0 < v < 1, single values are
obtained, corresponding to second moment conservation and average phase error
respectively. This is accomplished by dividing the unit v-interval into N equal

parts. Define

o 1 N
C, = N;Cn(r/zv)
_ 1 N
L, = NZEn(T/N)-

o

r=

Finally, we have arrived at two quantities related to the error in numerically
advecting an arbitrary periodic wave. Both quantities are time dependent. This
is due to the relative changes in the Fourier coefficients, since they each evolve
according to their own amplification factor. Unlike the single Fourier wave case,
where the wave retains similarity of form throughout all time steps, the data now
changes its shape. Since it is the finite difference scheme which causes this change,
it is to be expected that the scheme will perform better for this new shape : the
shape becomes better suited to the scheme. This indicates that measurements
of the error committed during the first time step are sufficient to describe the
scheme’s performance. It is then only a matter of testing the scheme with a
variety of different initial wave shapes. The values of Cy and Ej then indicate the

scheme’s effectiveness for the chosen shape.
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Figure 4: Fromm’s Scheme

23



3.2 Semi-Lagrangian Schemes

In section 1 the semi-Lagrangian finite difference method was presented, along
with several possible choices for interpolation. The results of Fourier analysis on

these schemes is presented here in graphical form.

Cubic Lagrange The Lagrange interpolating polynomial of degree three is the

simplest semi-Lagrangian method with fourth order spatial accuracy.

Amplitude Phase

o] 1.0 025075 1075 10,05
T s 104
05 05
0.0 0.0
_0_55 -0.5—:
1_0; 05 _1'0_:

\|\\\\|\\\\|\\\\|\\\\|\\ 7\\\|\\\\|\\\\|\\\\|\\\\|\\\

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 5: Cubic Lagrange

Quintic Lagrange Despite the extra effort in computing a higher degree poly-
nomial, the quintic Lagrange method shows little improvement over the cubic

Lagrange.

Hermite Cubic with Arithmetic Mean Hermite cubic interpolation re-
quires estimates for the derivative at each grid node. These are usually expressed

in terms of the discrete slopes of the finite difference solution. A simple form of

24



derivative estimate is provided by the mean of the discrete slopes, either side of

a grid node.

Hermite Cubic with Priestley Derivatives The Priestley derivative esti-
mate [6] provides fourth order accuracy. This is consistent with the accuracy of

the Hermite cubic itself.

Hermite Cubic with Hyman Derivatives The Hyman derivative estimate

[3] is similar in form to Priestley’s.

Cubic Spline This is a global interpolation method requiring considerable com-

putational effort when used in practice.
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In section 2.5 the errors incurred by numerically advecting an arbitrary periodic

1 ér

r=—00




The component wave numbers are

O, = Tﬂ'g.

[
where r =0, £1,4£2,---.

The corresponding error weights are

2
lao|? = (ﬁ)
9

2 = sin?(rmpu/2)

e (rm)?

where r = +1, 42, - .

Saw-Tooth Wave The saw-tooth wave, with wavelength 2/, is shown in figure 12.

This has component wave numbers

¢27’ = 0

A
borp1 = (2r + 1)71'790

where r =0, £1,4£2,---.

- 2[ -
Figure 12: Saw-Tooth
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The corresponding weights are

o> = ©
4
o, | = 0 r=41,42, -
4
2
el = oy PO ALER

Parabolic Blips This test wave is similar to the square wave described above,
except that the square waves are replaced by parabolas. The wave is described

by the function :

é:Jc(l—:Jc) 0<z<l!

fla)y=19 "
0 [ <z <2l
where f(x £ 2I) = f(x). The wave numbers and corresponding weights which

this function gives rise to are :

A
¢T — rﬂ—i
[
and
1 2
ol = (5)
3
2
|Oé276_1|2 — #
w3(2r —1)3

where r = 1,2, --.

The measure of conservation of second moment is an absolute quantity : C,
takes the value 1 if the second moment is conserved exactly; above and below
this value correspond to gain and loss respectively. This is not the case for the
phase measure, Eq. It takes the value 0 if there is no phase error. However no
scale has yet been defined for non-zero values. It is chosen here to assign a phase
error of 1 to the first order upwind scheme, and scale the errors for other schemes

accordingly.
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For each of the test waves there is a parameter which must be specified. This is
the quantity —. It describes how well the wave is represented on the grid : it is

the ratio of the grid spacing to a half wavelength. When this parameter is varied,




The weighted averages for phase error and second moment conservation error ap-
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