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Abstract

Data assimilation provides techniques for combining observations and prior

model forecasts to create initial conditions for numerical weather prediction

(NWP). The relative weighting assigned to each observation in the analysis is

determined by its associated error. Remote sensing data usually has correlated

errors, but the correlations are typically ignored in NWP. Here we describe

three approaches to the treatment of observation error correlations. For an

idealised data set, the information content under each simplified assumption

is compared to that under the correct correlation specification. Treating the

errors as uncorrelated results in a significant loss of information. However,

retention of an approximated correlation gives clear benefits.
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2 Methods and data

2.1 Data assimilation

The main aim of variational data assimilation methods is to minimise a cost function

which measures the distance of the solution to the background an



2.2.1 Shannon Information Content

The Shannon Information Content (SIC) is a measure of the reduction of entropy.

Entropy physically corresponds to the volume of state space occupied by the prob-

ability density function (pdf) describing the knowledge of the state. Assuming all

pdfs are Gaussian, [8],

SIC =
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= HTR−1H + B−1, (4)

where SA is the analysis error covariance matrix (SA(i, j) describes the error co-

variance between components i and j of xA). The larger the SIC, the greater the

reduction in uncertainty in our analysis.

2.2.2 Degrees of freedom of signal

The number of degrees of freedom of signal (dofS) indicate the number of quantities

deemed measured by the observations; the closer dofS is to the total number of

degrees of freedom (dof), the more information the observations have provided.

We have an initial covariance matrix B, and performing an analysis to minimise

the variance in observed directions gives us a posterior matrix SA. The size of the

eigenvalues in each matrix represent the size of the uncertainty in the direction of the

associated eigenvector; in comparing the eigenvalues of the two, we can determine

the reduction in uncertainty.

Take a non-singular square matrix L, as in [4], such that LBLT = I and

LSALT = ŜA. This transformation is not unique as we can replace L by XTL

where X is an orthogonal matrix. Now if we take X to be the matrix of the eigen-

vectors of ŜA, then we simultaneously reduce B to the identity matrix and SA to a

diagonal matrix of its eigenvalues, Λ;

XTLBLTX = XTX = I,

XTLSALTX = XTŜAX = Λ.
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4. Describe R by a truncated eigendecomposition [5];

R̃ = D1/2(αI +
K

∑

k=1

(

λk − α)vkvT

k

)

D1/2 = D1/2C̃D1/2 (6)

(λk, vk) is an eigenvalue, eigenvector pair of C, K is the number of leading

eigenpairs used in the approximation, and α is chosen such that trace(R̃)=trace(D),

i.e, so that there is no mis-approximation of the total error variance.

3 Results





proach is the approximation of Rt through its leading eigenpairs; this retains much

of the information available even with less than half the available eigenpairs. But,

addressing Fisher’s concerns [5], we find that spurious long range correlations are

present even for larger observation sets.

Although creating a truncated decomposition of Rt is more costly than the

traditional operational approach, it includes some of the correlation structure of Rt

and is still realtively easy to invert. If the computational cost involved in this is not

too extensive, then it may be possible to include correlations operationally, leading

to a more accurate forecast.

The above results are only currently applicable to the idealised framework in

which they have been obtained. Although we have used empirically derived ob-

servation errors, the background errors are not realistic. Since the calculations of

information are dependent on both B and the idealised observation operator H, a

more realistic specification of these would produce more general results. Also, this

paper has not addressed the operational feasibility of including correlated observa-

tion errors in the data assimilation algorithm. In future work, comparisons will be

made using more realistic models, and using different approaches to incorporating

correlation structures in the observation error covariance matrix.
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