

T H E U N I V E R S I T Y O F R E A D I N G

1

Fast algorithms for setting up the stiffness matrix in
hp-FEM: a comparison

T. Eibner J.M. Melenk

Abstract

We analyze and compare different techniques to set up the stiffness matrix in the hp-version of the finite element method.
The emphasis is on methods for second order elliptic problems posed on meshes including triangular and tetrahedral elements.
The polynomial degree may be variable. We present a generalization of the Spectral Galerkin Algorithm of [7], where the shape
functions are adapted to the quadrature formula, to the case of triangles/tetrahedra. Additionally, we study on-the-fly matrix-vector
multiplications, where merely the matrix-vector multiplication is realized without setting up the stiffness matrix. Numerical studies
are included.

I. INTRODUCTION

The hp-version of the finite element method (hp-FEM) (see, e.g., the monographs [13], [11], [5] and the references therein) as
well as the closely related spectral method (see, e.g., the survey article [1] and the references there) are well-established tools in
computational structural and fluid mechanics. Typically, the bulk of the alphanumerical cost in the hp-FEM is in the numerical
quadratures used to set up the stiffness matrix; this is in sharp contrast to the standard low order FEM (h-FEM), where most of
the computational effort is spent on the solution of the resulting (linear) system. The present paper therefore considers different
techniques for the rapid computation of the stiffness matrix in high order methods. As is standard in most FEM, all quadratures
are done on a reference element bK, which, in 2D, is either the reference square or the reference triangle; in 3D, the most important
ones are the hexahedron, the tetrahedron, the prism, and the pyramid. Also the shape functions are defined on the reference
element. We will discuss the generation of the element stiffness matrices for the following situation that is typical of scalar valued
second order elliptic equations:

(SK)ij := a(j ; i); a(u; v) :=

Z

bK

(A(x)ru) � rvd
; (1)

where the shape functions i 2 	 := f i j i = 1; : : :; 2;:=71R09TThe situation forectoralued second order (1) the theloorderordere.g.,ZbKb(x)rvKb(x)v d
 for functions

typical

2

II. SOME KEY IDEAS ILLUSTRATED IN 2D

A. The idea of sum factorization

The idea of sum factorization can be motivated by the following problem, which mimics the computation of a mass or a stiffness
matrix in 2D: Compute, for all double indices (i1; i2), (j1; j2) 2 f1; : : : ; pg2 the field M with entries

M(i1;i2);(j1;j2) :=

qX

k1=0

qX

k2=0

’i1(k1) i2(k2)e’j1 (k1) e j2(k2)g(k1; k2) (2)

where the functions ’i, i, e�i, e i, and g are given. The naive evaluation of all entries of M requiresO(p4(1 + q)2) floating point
operations. Since in our applications q = O(p), we arrive at a total cost of O(p6) to compute the p4 entries of M . By rerranging
the sums, this work can be reduced:

M(i1;i2);(j1;j2) =

qX

k1=0

’i

3

We note that the bilinear form â is well-defined on eQp because the polynomials û 2 eQp are constant on the line �2 = 1 so that
the term 1

1��2
@�1 û, which seemingly has a singularity at �2 = 1, is in fact smooth there.

The basis 	 on bK is defined such that three goals are met: a) 	 contains the space of Pp of polynomial of degree p to ensure
good approximation properties; b) 	 leads to a fast evaluation of the stiffness matrix SK ; c) 	 allows for an easy assembly of
the element stiffness matrix SK into the global stiffness matrix. The last requirement effectively dictates that the set 	 consist
of “external shape functions” (which are typically split further into “vertex shape functions” and “edge shape functions”) and
“internal shape functions”: the internal shape functions vanish on

4

terms of the form
l
(2)
i2

(x)

1�x at x = 1 is then to be understood as taking the limit as x ! 1. This is merely a notational problem since

the polynomials l(2)i2
, l(2)j2

vanish at the endpoints x� 1.

Upon expanding the matrix vector products inside the double sum we arrive at a sum with 4 four terms. For the technique of sum
factorization, all four terms can be treated similarly. For example, for one of the “mixed” ones, we get

SII;mixed
(i1;i2);(j1;j2) :=

qX

k=0

qX

l=0

!
(1)
k !

(2)
l l0i1(x

(1)
k)

li2(x
(2)
l)

1 � x
(2)
l

Â12(x
(1)
k ; x

(2)
l)lj1(x

(1)
k)

l0j2(x
(2)
l)

1 � x
(2)
l

:

Using sum factorization techniques, the cost to evaluate all (p�1)4 entries of SII;mixed is, as seen above,O(p4(1+q)+p2(1+q)2).
Up to now, the fact that the functions l(1)i , l(2)i are Lagrange interpolation polynomials with respect to some points was not relevant.

If we choose the points f�
(1)
i j i = 0; : : : ; pg, f�

(2)
i j i = 0; : : : ; pg to be subsets of the quadrature points, then the sets

fk 2 f0; : : : ; qg j li1(x
(1)
k) 6= 0g; fl 2 f0; : : : ; qg j li2(x

(2)
l) 6= 0g;

have cardinality bounded by 1 + (q � p). Thus, from the abo;p Th31 9.96264 Tf
1 0 0 1 300 686.86 Tm
(1)Tj
/R40 9.96264 Tf
7.68 0 Td
Tj
4.9.96264 Tw
19.5353 0
26.8483 se9629339v23925 9.96264 Td
(l)Tj86R43 6.97385 Tf
3.5(bou14 0 Td
(aluate)T8.93.6505 0 Td
(all89 09.)Tj
7.07se4.16 Td
028.96264 Tup 9.96264 Tf
3.8356 0 0 Td
(q)Tj
/mixed)Tj
/R21 9.962647
/R32196 Td
((d
(as)Tj
18)Tj
7.07d
(as)Tj
18seenab.964400-6 Td
((reduc7613 333d
(54505 0 Td
(all(12)Tj
/R31 9.962502 0 l)Tj1 -1.4400 6.97385 Tf
5.15376 3.719975Tj
/R25 9.96264 Tf
10.3108 0 Td
(p)Tj
/R31Td
((1)Tj
8.98677 0 Td
5+)Tj
/6/R43 6.97385R34 6.97385 Tf
-0.)Tj
14.6
/R31 9.96264(i)Tj
/R40 9.962j
/6/R43 6.97385d
(;)Tj
4.43962 .(1(4 Tf
7.91074 0 Td
(q)TjUp(1d
(Thus,)Tj
25.5255 0 Td
(fromom)Tj
22.4167 0 Td
(th7.671d
(q)Tj
/mple,)T617.0238 0 TIn9.3589 0 Td
(then)particular0.3108 9 -0.96001 that f; thj
4.ed;x

5

Theorem II.3: Let bK = T 2, let A 2 L1(bK) be a matrix-valued function x 7! A(x) 2 R
2

7

where

	
(KS)
B := �

(KS)
B �D�1

2 =
n
� �D�1

2 j� 2 �
(KS)
B

o
; 	

(Lag)
B := �

(Lag)
B �D�1

2 =
n
� �D�1

2 j� 2 �
(Lag)
B

o

and the sets �B are sets of functions defined on Q2 given by

�
(KS)
0 = �

(Lag)
0 = �0 := ff3(�2)g ;

�
(KS)
1 = �

(Lag)
1 = �1 := ff2(�1)f2(�2); f3(�1)f2(�2)g ;

�
(KS)
2 :=

n
f1(�1)f

p+1
2 (�2)P

(1;1)
p�1 (�1) j p = 1; : : : ; pAB � 1

o
;

�
(Lag)
2 :=

n
f1(�1)f

2
2 (�2)P

(1;1)
p�1 (�1) j p = 1; : : : ; pAB � 1

o
;

�
(KS)
3 = �

(Lag)
3 = �3 :=

n
f2(�1)f1(�2)P

(1;1)
q�1 (�2) j q = 1; : : : ; pAC � 1

o
;

�
(KS)
4 = �

(Lag)
4 = �4 :=

n
f3(�1)f1(�2)P

(1;1)
q�1 (�2) j q = 1; : : : ; pBC � 1

o
;

�
(KS)
5 :=

n
f1(�1)f1(�2)f

p
2 (�2)P

(1;1)
p�1 (�1)P

(2p+1;1)
q�1 (�2)

��� 1 � p � pK � 2
1 � q � pK � p� 1

o
;

�
(Lag)
5 :=

n
f1(�1)f1(�2)f2(�2)Cpl

(N1)
p (�1)Cql

(N2)
q (�2)

��� 1 � p � pK � 1
1 � q � pK � 2

o
;

where the constants Cp are scaling parameters.
Definition III.5—shape functions on T 3: Let T 3 be the reference tetrahedron and let p = (pAB ; : : : ; pCD; pABC ; : : : ; pBCD; pK)
be a degree vector. As in the 2D case, the subscriptsAB; : : : ; BCD represent edges and faces of the tetrahedron T 3 with vertices
A, B, C, D. For i = 1; 2; 3 let Ni = f�

(i)
k jk = 1; ::; pK � 3g be a nodal set with and l(Ni)

k the k-th Lagrange interpolation
polynomial with respect to Ni. Then we define

	(KS) =
13[

B=0

	
(KS)
B and 	(Lag) =

13[

B=0

	
(Lag)
B ;

where

	
(KS)
B := �

(KS)
B �D�1

3 =
n
� �D�1

2 j� 2 �
(KS)
B

o
	

(Lag)
B := �

(Lag)
B �D�1

3 =
n
� �D�1

2 j� 2 �
(Lag)
B

o

and the sets �B are sets of functions defined on Q3 given by:

�
(KS)
0 = �

(Lag)
0 = �0 := ff3(�3)g ;;

K S)

3..
D

,p731 0 Td
(Lag)Tj
/R43 6.97385 Tf
13.9087 0 Td
())Tj
/R34 6.97385 Tf
-17.026 -8.16001 Td
(B)Tj
/R31 9.96264 Tf
23.28 3 Td574)=0:=f �)
B := �2)�5.15793 0 TdΩ(�)TΩ(;)TjΩ/R31 9.96264 TfΩ-306.84 -21.96 TdΩ(�)TjΩ/R43 6.97385 TfΩ7.2 5.15996 TdΩ(()TjΩ/R34 6.97385 TfΩ3Ω/R31 9.96264 TfΩ23.28 3 T85 TfΩ8.5S);2(Lag)� 221�)

4404 Td
(2)Tj
/R23462 0 Td
(1)Tj264 Tf
7.7911R31 9.96264 T
(on)T143999 Td
(:=)Tj
/R406 Td
(=)Tj
10.5508 0 Td
(�)Tj
/R
-15793 0 T1)f+1
2 p+121

(�
1 �p+1 0 Td
(p)Tj
/R40 9.96264 Tf
7.31108
13.68
4.43999 1.44004 Td
(()Tj
/R25 9.96264 Tf
3.8356 0 Td
(�)Tj
/R43
())Tj
-15.5896 -7.92002 Td
(1)Tj
/R31 9.96264 Tf
21.700445�p+1Tf
4.43999 1.43999
/R34 6.9�99 1.43999 6264 Tf
6.6 -11.04 Td
(;)Tj
/R31 9.96264 Tf
-399 -27.96 Td
(�)Tj
/R43 6.97385 Tf
7.2 5.15996 Td
(()Tj
/R34 6.97385 Tf
3.11731 0 Td
(Lag)Tj
/R43 6.97385 Tf
13.9087 81037385 Tf
4 Td
(25 9.96264 Tf
3.8356 0 T Td
85 Tf
4 Td
(0 Td
(p)Tj
/R34 6.97385 Tf
5.07139 -1.43999 Td
(AC)Tj
/R40 9.76264 Tf
14.88 1.43999 Td
(�)Tj
/R3.8356 .43994 Td
(2)Tj
/R31 9.96264 Tf
4.5Lagra(1)Tj
/R28 9.96264 Tf
5.04924 11.1.68 Td
(�)Tj
/R43 6.97385 Tf
7.19998 5.16001 Td
(()Tj
/R34 6.97385 Tf
3.11731 0 Td
(K)Tj
7.19578 0 Td
(S)Tj
/R43 6.97385 Tf
5.27654
/R34 6.97385 Tf
3.11731 0 Td
(0)Tj
/R31 9.96264 Tf
21.96 2.63999 Td
(=)Tj
10.4308 0 Td
(�)Tj
/R43 6.97385 Tf
7.20923 5.16001 Td
(()Tj
/R34 6.97385 Tf
3.11731 0 Td
(Lag)Tj
/R43 6.97385 Tf
13.908 5.16001 Td
(()Tj
/R34 6.973
(0)Tj
/R31 9.96264 Tf
23.4 2.63999 Td
(=)Tj
10.5508 0 Td
(�)Tj
/R43 6 5.16001 Td
(()Tj
/R43999 Td
(0)Tj
/R31 9.9626Tf
3.8356 0 Td
(�)Tj
/R43 6.97385 Tf
4.92439 -1.43994 Td
(2)Tj
/R31 9.96264 Tf
4.56001 1.430441 -1.Tj
/R43 6.97385 Tf
4.93848 -1.43999 Td
(3)Tj
/R31 9.96264 Tf
4.43999 1.43999 Td
(()Tj
/R25 9.96264 Tf
3.8356 0 Td
(�)Tj
/R43 6.97385 Tf
4.92441 -1.43)Tj
/R25 9.96264 Tf
3.8356 0 Td
(�)Tj
/R43 6.97385 Tf
4.92441 -1.44004 Td
(1)Tj
/R31 9.96264 Tf
4.55999 1.44004 Td
())Tj
/R25 9.96264 Tf
3.8356 0 Td
(f)Tj
/R43 6.97385 Tf
6.00442 4.2 Td
(2)Tj
-1.08 -6.6 Td
(2)Tj
/R31 9.96264 Tf
5.52 2.417.026 -7.92002 Td
(1)Tj
/R31 9.96264 Tf
23.4 2.75996 Td
(=)Tj
10.5508 0 Td
(�)Tj
/R43 6.97385 Tf
7.20925 -1.43994 Td
(1)Tj
/R31 9.96264 Tf
7.2 1.43994 Td
(:=)Tj
/R40 9.96264 Tf
13.3104 0 Td
(f)Tj
/R25 9.1)Tj
/R34 6.97385 Tf
7.07146 0 Td
(;)Tj
/R43 6.97385 Tf
2.399 0 Td
(1))Tj
/R34 6.97385 Tf
-10.99143 6.97385 Tf
7.20923 5.16006 Td
(()Tj
/R34 6.97385 Tf
3.11731 0 Td
(Lag)Tj
/R43 6.97385 Tf
13.9087 0 Td
())Tj
-17.026 -7.92002 Td
(1)Tj
/R31 9.96264 Tf
23.4 2.7599Tj
/R43 6.97385 Tf
5.27654 0 Td
())Tq385 Tf
3.11731 0 Td
7.07146 0 Td
(.96264 Td
0 Td
2.75996 Td
(=)Tj
10.4308 0 Td
(�)Tj
4-7.92002 Td
(p)Tj
/R58 6.97385 Tf
4.07969 0 Td
(�)Tj
/R43 6.97385 Tf
6.2346 0 Td
(:)Tj
4.43Tf
4.43999 1.43999
/R34 6.9)Tj
17.3843 S);2(Lag) � 2S);2(Lag) � 2S);2(Lag) � 221�)

4404 Td
(2)Tj
/R23462 0 Td
(1)Tj264 Tf
7.7911R31 9.96264 T
(on)T143999 Td
(:=)Tj
/R406 Td
(=)Tj
10.5508 0 Td
(�)Tj
/R
-15793 0 T1)f+1
2 �)21

(� S2

12(SLag)S�216 6.971 9.96264 Tf
4.56001 1.430441 -1.4404 Td
(2)Tj
/R23462 0 Td
(1)Tj
/R31 9.96261793 0 Td
(�)Tj
913.9087 0 Td
())Tj
/R34 6.97385 Tf
-17.026 -8.16001 Td
(4404 Td
(2)Tj
/R23462 0 Td
(1)Tj264 Tf
7.7911R31 9.96264 T
(on)T143999 Td
(:=)Tj
/R406 Td
(=)Tj
10.5508 0 Td
(�)Tj
/2 0 Td
(2)Tj1)Tj
/R31 9.96264 Tf
4.55999 1.43999 Td
())Tj
/R25 9.96264 Tf
3.8356 0 Td
(f)Tj
/R34 6.97385 Tf
6.00442 3.835p+1
2 �)21

(�
1

8

�
(KS)
11 = �

(Lag)
11 = �11 :=

n
f2(�1)f1(�2)P

(1;1)
q�1 (�2)f1(�3)f

q
2 (�3)P

(2q+1;1)
r�1 (�3)

���

1 � q � pACD � 2; 1 � r � pACD � q � 1
o
;

�
(KS)
12 = �K Soag)

11 = 11 =

n
f2

)

9

where

~r�
(K)
i :=

8
><
>:

h
1

(1��2)
@�
@�1

; @�
@�2

iT
: d = 2

h
1

(1��2)(1��3)
@�
@�1

;

10

B. Sum factorization

Considering Definition III.4 and Definition III.5 we observe that after transformation

11

Remark V.4: For each pair (B;B0) a separate quadrature rule could be chosen. In particular for blocks with low polynomial
degree this might lead to further savings.
Remark V.5: The precomputing of the shape functions and coefficient matrix in step 3 and 4 is done due to the fact that evaluations
of the shape functions and coefficient matrix can be very expensive, especially for large polynomial degrees or coefficients with a
complicated structure. The precomputations of step 3 and 4 lead to a considerable speed-up, since we have to evaluate the shape
functions and coefficient matrix just once for all quadrature points.
Remark V.6: It is not necessary to perform the precomputations of step 3 for each element of a meshing T . Provided the quadrature
rules depend only on the internal polynomial degree and due to the fact that pe; pf � pK for all edges and faces of the element
K, it suffices to compute the arrays of step 3 just once for each pK 2 f1; : : : ; pmaxg and assumed uniform polynomial degree
distribution, that is pe = pf = pk for all edges and faces.

C. Spectral Galerkin method

In the last subsection we already exploited the tensor product structure of the shape functions. If, however, the shape functions
and the quadrature rules are adapted to each other, then a further reduction of the complexity is possible. To that end we consider
in the following quadrature rules of the form

QRi = S(i) �W (i) = f(�
(i)
0 ; !

(i)
0); : : : ; (�(i)

qi
; !(i)

qi
)g; QR = QR1 � : : :� QRd

which incorporate the det jD0
dj terms of (13) in conjunction with the modified shape functions �(Lag), where the nodal sets N (i)

are subsets of the quadrature points, that is N (i) � S(i): Considering the shape functions of �(Lag), we additionally observe a
simpler tensor product stucture as in the general cases (13) and (14)

�(Lag) =
n
�(B;k1;k2)(�) = g

(1)
B;k1

(�1)g
(2)
B;k2

(�2) j 1 � ki � Ki(B)
o

for d = 2 and
�

(Lag)
13 =

n
�(13;k1;k2;k3)(�) = g

(1)
13;k1

(�1)g
(2)
13;k2

(�2)g
(3)
13;k3

(�3) j 1 � ki � K
o

for d = 3. Evaluating the gradient of the interior bubble shape functions at the quadrature points, we obtain, due to the adaption
of shape functions and quadrature rules, a considerable number of zeros. Thus, we can replace the sums in Algorithm V.2 by the
following pattern:

q1X

l1=0

~g
(1)
(B;r;k1)

~g
(1)
(B′;r′;k′

1)Ĉr′;r

���
(�

(1)
l1

;�
(2)
l2

;�
(3)
l3

)
!

X

li2NZ
(1)

(r;r′)
[k1;k′

1]

~g
(1)
(B;r;k1)

~g
(1)
(B′;r′;k′

1)
Ĉr′;r

���
(�

(1)
l1

;�
(2)
l2

;�
(3)
l3

)
;

where the sets of relevant indices

NZ
(1)
(r;r′)[k1; k

0
1] := fl1 2 f0; : : : ; q(1)g j ~g

(1)
(B;r;k1)

~g
(1)
(B′ gpon0k4 6.97385 Tf
3.11731 1 Td
(1)TR61 4.98132 Tf
-07pg

each199 each199 each199

12

3) Find a permutation (i1; i2; i3) with W(i1;i2;i3) � W(i′1;i′2;i′3)
for all (i01; i

0
2; i

0
3).

4) For 1 � ki � Ki(B), 1 � k0
i � Ki(B

0) and 0 � li � qi compute the auxiliary arrays

H(1)[ki3 ; k
0
i3 ; li1 ; li2] =

X

li32NZ(i3)

F (i3)[ki3 ; k
0
i3 ; li3]Ĉ(r0; r; l1; l2; l3)!

(i3)
li3

H(2)[li1 ; ki3 ; k
0
i3 ; ki2 ; k

0
i2] =

X

li2 2NZ(i2)

F (i2)[ki2 ; k
0
i2 ; li2]H

(1)[li1 ; li2 ; ki3 ; k
0
i3]!

(i2)
li2

5) For all 1 � ki � Ki(B), 1 � k0
i � Ki(B

0) add

SK [(B; k1; k2; k3)][(B
0; k0

1; k
0
2; k

0
3)] + =

X

li1 2NZ(i1)

F (i1)[ki1 ; k
0
i1 ; li1]H

(2)[li1 ; ki3 ; k
0
i3 ; ki2 ; k

0
i2]!

(i1)
li1

Assuming quadradure rules of order

qi =

8
<
:

pK + q : d = 2; i = 1
pK � 1 + q : d = 2; i = 2
pK + q : d = 3

(15)

with q � 0 and q = O(1), we obtain, completely analogously to [7], a complexity of O(p2d
K) for setting up the element stiffness

matrix SK . Thus, asymptotically Algorithm V.7 is superior to Algorithm V.2 if we consider the computing time for setting up
SK . However, the critical point is that due to the increased number of internal shape functions for large polynomial degrees
pK the advantage in setting up the stiffness matrix will be offset if we consider an hp-implementation making use of static
condensation, since, at least asymptotically, the cost of static condensation dominates the total cost per element. Only numerical
tests, which we present below, can tell whether there exists a range fp0; : : : ; pNg of polynomial degrees where it is preferable to
use Algorithm V.7.

VI. REMARKS ON STATIC CONDENSATION AND PRECOMPUTED ARRAYS

A. Static Condensation

In hp-FEM it is customary to perform static condensation. The partition of the shape functions into external E=fvertex, edge,
faceg and I=internal shape functions implies a corresponding block structure of the local element stiffness matrices SK as well as
of the global stiffness matrix Sglob. That is:

SK =

�
SEE

K SEI
K

SIE
K SII

K

�
Sglob =

�
SEE SEI

SIE SII

�
:

Due to the support properties of the internal shape functions, the matrix SII is block diagonal with SII = diag(SII
K). In static

condensation, the Schur complement is formed by eliminating the internal shape functions, Sc =

14

5) Initialize b = 0
6) Compute the auxiliary arrays

H(1)[r0;

15

Fig. 3. Proof of Lemma VII.3

17

as follows: For all 1 � r0 � 2, 0 � B0 � 5 compute

a) S1 :=
X

k′

1

#NZ(1)(B0; r0; k0
1) and S2 :=

X

k′

2

#NZ(2)(B0; r0; k0
2)

b) If [(q2 + 1)S1 +K1(B
0)S2] � [(q1 + 1)S2 +K2(B

0)S1]

Initialize H(1)[k0
1; l2] = 0

Add H(1)[k0
1; l2]+ = v(B′;k′

1;k′

2)!
(2)
l2
G(2)(B0; r0; k0

2; l2)

for all 1 � k0
1 � K1(B

0), 1 � k0
2 � K2(B

0), l2 2 NZ(2)(B0; r0; k2).

Add H(2)[r0; l2; l1]+ = !
(1)
l1
H(1)[k0

1; l2]G
(1)(B0; r0; k0

1; l1)

for all 1 � k0
1 � K1(B

0), l1 2 NZ(1)(B0; r0; k1), 0 � l2 � q2.

c) If [(q2 + 1)S1 +K1(B
0)S2] > [(q1 + 1)S2 +K2(B

0)S1]

InitializeH(1)[k0
2; l1] = 0

Add H(1)[k0
2; l1]+ = v(B′;k′

1;k′

2)!
(1)
l1
G(1)(B0; r0; k0

1; l1)

for all 1 � k0
1 � K1(B

0), 1 � k0
2 � K2(B

0), l1lll
20 0

2)!
(1)
l

Add H!

18

with

WH (B0; r0) = minf (q2 + 1)S1(B
0; r0) +K1(B

0)S2(B
0; r0); (q1 + 1)S2(B

0; r0) +K2(B
0)S1(B

0; r0) g;

Wb(B; r) = minf2(q2 + 1)S1(B; r) +K1(B)S2(B; r); 2(q1 + 1)S2(B; r) +K2(B)S1(B; r) g

and Si(B; r) =
P

ki
NZ(i)((

19

Fig. 5. Setting up the element stiffness matrix - computing time - blockwise - 2D

10
1

10
−5

10
−4

20

TABLE II

21

Fig. 6. Setting up the element stiffness matrix - computing time - 3D

10
1

10
−6

10
−4

10
−2

10
0

10
2

10
4

22

Fig. 9. Different quadrature rules - assemblation and matrix vector multiplication - computing time - 3D

10
1

