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with x 2 Rn [3]. We can write the 4D-Var objective function (1) in this form by putting
f(x) = C−1=2d̂, where

d̂(x0) = ¡
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with R = diagfRig:
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Figure 1: Comparison of convergence of (a) objective function and (b) its gradient for a
constant convergence criterion (solid line) and a variable criterion (dashed line).

with D=Dt = @=@t + u@=@x. In these equations h̄ = h̄(x) is the height of the bottom
orography, u is the velocity of the fluid and ` = gh is the geopotential, where g is the
gravitational constant and h > 0 the depth of the fluid above the orography. The problem
is defined on the domain x 2 [0; L], with periodic boundary conditions, and we let t 2 [0; T ].

The model is discretized using a two-time-level semi-implicit semi-Lagrangian scheme.
Further details of the numerics can be found in [6]. We use a periodic domain of 1000
grid points, with a spacing ∆x = 0:01 m, so that x 2 [0 m; 10 m]. The model time step is
taken to be 9:2 £ 10−3 s and we consider an assimilation over a window of 100 time steps.

In order to test the assimilation we run ‘identical twin’ experiments, in which observa-
tions are generated from a run of the model defined to be the truth. These observations
are then assimilated using 4D-Var, starting from an incorrect prior estimate. The in-
ner minimization is performed using a conjugate gradient method and is considered to





Again it is possible to provide a theoretical understanding of these results by an analysis
of the (PGN) method. The method can be considered as a way of solving the approximate
normal equations

J̃(x̃∗)T f(x̃∗) = 0: (14)

Then based on the work of [7] and [8] we can prove the following theorem:

Theorem 2 Let the first derivative of J̃(x)T f(x̃) be written

J̃(x)T J(x) + Q̃(x); (15)

where Q̃(x) represents second order terms arising from the derivative of J̃(x). Suppose
that on each iteration k
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