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Summary. This paper analyzes two-level Schwarz methods for matrices arising
from the p-version finite element method on triangular and tetrahedral meshes. The
coarse level consists of the lowest order finite element space. On the fine level, we
investigate several decompositions with large or small overlap leading to optimal or
close to optimal condition numbers. The analysis is confirmed by numerical experi-
ments for a model problem.
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directly. On tensor product elements, one can apply optimal preconditioners
for the local sub-problems as in [KJ99, BSS04, BS04].

In the current work, we study overlapping Schwarz preconditioners with
large or small overlap. The condition numbers are bounded uniformly in the
mesh size h and the polynomial order p. To our knowledge, this is a new result
for tetrahedral meshes. We construct explicitly the decomposition of a global
function into a coarse grid part and local contributions associated with the
vertices, edges, faces, and elements of the mesh.

The rest of the paper is organized as follows: In Section 2 we state the
problem and formulate the main results. We prove the 2D case in Section 3 and
extend the proof for 3D in Section 4. Finally, in Section 5 we give numerical
results for several versions of the analyzed preconditioners.

2 Definitions and Main Result

We consider the Poisson equation on the polyhedral domain Ω with homoge-
neous Dirichlet boundary conditions on ΓD ⊂ ∂Ω, and Neumann boundary
conditions on the remaining part ΓN . With the sub-space V := {v ∈ H1(Ω) :
v = 0 on ΓD}, the bilinear-form A(·, ·) : V × V → R and the linear-form
f(·) : V → R defined as

A(u, v) =
∫
Ω

∇u · ∇v dx f(v) =
∫
Ω

fv dx,

the weak formulation reads

find u ∈ V such that A(u, v) = f(v) ∀ v ∈ V. (1)

We assume that the domain Ω is sub-divided into straight-sided triangular
or tetrahedral elements. In general, constants in the estimates depend on the
shape of the elements, but they do not depend on the local mesh-size. We
define

the set of vertices V = {V },
the set of edges E = {E},

the set of faces (3D only) F = {F},
the set of elements T = {T}.

We define the sets Vf , Ef ,Ff of free vertices, edges, and faces not completely
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vertices, and of edge-based, face-based, and cell-based bubble functions. The
Galerkin projection onto Vp leads to a large system of linear equations, which
shall be solved with the preconditioned conjugate gradient iteration.

This paper is concerned with the analysis of additive Schwarz precondi-
tioning. The basic method is defined by the following space splitting. In Sec-
tion 5 we will consider several cheaper versions resulting from our analysis.
The coarse sub-space is the global lowest order space

V0 := {v ∈ V : v|T ∈ P 1 ∀T ∈ T }.

For each inner vertex we define the vertex patch

ωV =
⋃

T∈T :V ∈T
T

and the vertex sub-space

VV = {v ∈ Vp : v = 0 in Ω \ ωV }.

For vertices V not on the Neumann boundary, this definition coincides to
Vp∩H1

0 (ωV ). The additive Schwarz preconditioning operator is C−1 : V ∗p → Vp
defined by

C−1d = w0 +
∑
V ∈V

wV

with w0 ∈ V0 such that

A(w0, v) = 〈d, v〉 ∀ v ∈ V0,

and wV ∈ VV defined such that

A(wV , v) = 〈d, v〉 ∀ v ∈ VV .

This method is very simple to implement for the p-version method using
a hierarchical basis. The low-order block requires the inversion of the sub-
matrix according to the vertex basis functions. The high order blocks are
block-Jacobi steps, where the blocks contain all vertex, edge, face, and cell
unknowns associated with mesh entities containing the vertex V .

The rate of convergence of the cg iteration can be bounded by means
of the spectral bounds for the quadratic forms associated with the system
matrix and the preconditioning matrix. The main result of this paper is to
prove optimal results for the spectral bounds:

Theorem 1. The constants λ1 and λ2 of the spectral bounds

λ1 〈Cu, u〉 ≤ A(u, u) ≤ λ2 〈Cu, u〉 ∀u ∈ Vp

are independent of the mesh-size h and the polynomial order p.
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The proof is based on the additive Schwarz theory, which allows to express
the C-form by means of the space decomposition:

〈Cu, u〉 = inf
u=u0+

P
V uV

u0∈V0,uV ∈VV

‖
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In the following, let V be a vertex not on the Dirichlet boundary ΓD,
and let ϕV be the piece-wise linear basis function associated with this vertex.
Furthermore, for s ∈ [0, 1] we define the level sets

γV (s) := {y ∈ ωV : ϕV (y) = s},

and write γV (x) := γV (ϕV (x)) for x ∈ ωV . For internal vertices V, the level set
γV (0) coincides with the boundary ∂ωV (cf. Figure 1). The space of functions
being constant on these sets reads

SV := {w ∈ L2(ωV ) : w|γV (s) = const, s ∈ [0, 1] a.e.};

its finite dimensional counterpart is

SV,p := SV ∩ Vp = span{1, ϕV , ..., ϕpV }.

We introduce the spider averaging operator(
ΠV v

)
(x) :=

1
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(iii) if u is continuous at V , then

(ΠV u)(V ) = ΠV
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‖ΠV u‖2
L2(ωV ) ' hV

∫ 1

0

∫
γV (0)

∣∣(ΠV u)(FV (
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Using rV (x) ' (1− ϕV (x))hV we derive∫
ωV

1
r2
V

(
u−ΠV u

)2
dx

' hV
∫ 1

0

∫
γV (0)

1
r2
V

(
u(FV (y, s))− 1

|γV (0)|

∫
γV (0)

u(FV (x, s)) dx
)2

(1− s) dy ds

� hV
∫ 1

0

∫
γV (0)

h2
V

r2
V

∣∣∇yu(FV (y, s))
∣∣2 (1− s) dy ds

' hV
∫ 1

0

∫
γV (0)

1
(1− s)2

∣∣∣(∇u)(FV (y, s))
∂FV
∂y

∣∣∣2 (1− s) dy ds

= hV

∫ 1

0

∫
γV (0)

∣∣(∇u)(FV (y, s))
∣∣2 (1− s) dy ds

' ‖∇u‖2
L2(ωV ).

(iv) Since ϕV 1 = ΠV
0 1, we can subtract the mean value u := 1

|ωV |
∫
ωV
u(x) dx:

‖∇{ϕV u−ΠV
0 u}‖ = ‖∇{ϕV (u− u)−ΠV

0 (u− ū)}‖
≤ ‖∇

{
ϕV (u− ū)

}
‖+ ‖∇ΠV (u− ū)−ΠV (u− ū)|γV (0)∇(1− ϕV )‖

� ‖(∇ϕV )(u− ū)‖+ ‖ϕV∇u‖+ ‖∇u‖+
∣∣∣ΠV (u− ū)|γV (0)

∣∣∣‖∇ϕV ‖
� h−1‖u− ū‖+ ‖∇u‖
� ‖∇u‖.

We have used (ii) and the trace inequality for∣∣∣ΠV (u− ū)|γV (0)

∣∣∣ =
1

|γV (0)|

∣∣∣∣ ∫
γV (0)

u− ū dx
∣∣∣∣ ≤

≤ |γV (0)|−1/2 ‖u− ū‖L2(γV (0)) � ‖∇(u− ū)‖+ h−1‖u− ū‖.
(3)

(v) We finally prove ‖r−1
V {ϕV u−ΠV

0 u}‖L2(ωV ) � ‖∇u‖L2(ωV ). From the def-

inition of rV , we get∥∥ 1
rV
{ϕV u−ΠV

0 u}
∥∥ ' ∥∥ 1

rV
{ϕV u−ΠV

0 u}
∥∥+

∑
V ′∈ωV \{V }

∥∥ 1
rV ′
{ϕV u−ΠV

0 u}
∥∥.

We bound the first term as follows:
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rV
{ϕV u−ΠV

0 u}
∥∥
L2(ωV )

=
∥∥ 1
rV

{
(1− (1− ϕV ))u−ΠV u+ (1− ϕV )(ΠV u)|γV (0)

}∥∥
=
∥∥ 1
rV

{
(u−ΠV u)− (1− ϕV )(u− ū) + (1− ϕV )

(
(ΠV u)|γV (0) − ū

)}∥∥
�
∥∥ 1
rV

(u−ΠV u)
∥∥+

∥∥1− ϕV
rV

(u− ū)
∥∥+

∥∥1− ϕV
rV

(
(ΠV u)|γV (0) − ū

)∥∥
� ‖∇u‖+ h−1‖u− ū‖+ h−1

∣∣∣(ΠV u)|γV (0) − +
ku
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Obviously, u − ΠVu vanishes in any vertex V ∈ Vf . These well-defined zero
vertex values are reflected by the following norm definition:

||| · |||2 := ‖∇ · ‖2
L2(Ω) + ‖ 1

rV
· ‖2

L2(Ω) (5)

Theorem 2. Let u1 be as in Lemma 1. Then, the decomposition

u1 =
∑
V ∈Vf

ΠV
0 u1 + u2 (6)

is stable in the sense of∑
V ∈Vf

‖ΠV
0 u1‖2

A + |||u2|||2 � ‖u‖2
A. (7)

Proof. The vertex terms in equation (7) are bounded by

‖ΠV
0 u1‖2

A = ‖ΠV u1
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decomposition further, such that the remaining function, u3, contributes only
to the inner basis functions of each element.

Therefore we need a lifting operator which extends edge functions to the
whole triangle preserving the polynomial order. Such operators were intro-
duced in Babuška et al. [BCM91], and later simplified and extended for 3D by
Muñoz-Sola [Mun97]. The lifting on the reference element TR with vertices
(−1, 0), (1, 0), (0, 1) and edges ER1 := (−1, 1)× {0}, ER2 , ER3 reads:

(R1w)(x1, x2) :=
1

2x2

∫ x1+x2

x1−x2

w(s)ds,

for w ∈ L1([−1, 1]). The modification by Muñoz-Sola preserving zero bound-
ary values on the edges ER2 and ER3 is

(Rw)(x1, x2) := (1− x1 − x2) (1 + x1 − x2)
(
R1

w

1− x2
1

)
(x1, x2).

For an arbitrary triangle T = FT (TR) containing the edge E = FT (ER1 ),
its transformed version reads

RTw := R
[
w ◦ FT

]
◦ F−1

T .

The Sobolev space H1/2
00 (E) on an edge E = [VE,1, VE,2] is defined by its

corresponding norm
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Lemma 5. The edge-based interpolation operator ΠE
0 defined in (8) is bounded

in the ||| · |||-norm:
‖∇ΠE

0 u‖L2(ωE) � |||u|||ωE

Proof. Foremost, we apply Lemma 4 on a single triangle T ⊂ ωE :

‖∇ΠE
0 u‖2

L2(T ) = ‖∇RT trE u‖2
L2(T )

� ‖ trE u‖2
H1/2(E) +

∫
E

1
rVE

(trE u)2 ds.

For the first term, the trace theorem can be immediately applied.
The second term, the weighted L2-norm on the edge, can be bounded by

a weighted norm on the triangle. We transform onto the reference triangle,∫
E

1
rVE

u2 ds =
∫
ER

1

1
rV

ER1

(u ◦ FT )2 ds,

and write uR := u ◦ FT . Due to symmetry, we consider only the right half of
the edge ER1 , where rER

1
= 1

1−x1
, and finally apply a trace inequality:∫ 1

0

1
1− x1

uR(x1, 0)2 dx1 �

�
∫ 1

0

1
1− x1

∫ 1−x1

0

(1− x1)
[∂uR
∂x2

]2

+
1

1− x1
[uR]2 dx2 dx1

� |||uR|||2TR ' |||u|||2T .

This leads us immediately to

Theorem 3. Let u2 be as in Theorem 2. Then, the decomposition

u2 =
∑
E∈Ef

ΠE
0 u2 + u3 (9)

satisfies u3 = 0 on
⋃
E∈Ef E and is bounded in the sense of∑

E∈Ef

‖∇ΠE
0 u2‖2

L2
+ ‖∇u3‖2

L2
� |||u2|||2. (10)

3.4 Main result

Proof (Proof of Theorem 1 for the case of triangles). Summarizing the last
subsections, we have

u1 = u−Πhu, u2 = u1 −
∑
V ∈Vf

ΠV
0 u1, u3 = u2 −

∑
E∈Ef

ΠE
0 u2,
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and the decomposition

u = Πhu+
∑
V ∈Vf

ΠV
0 u1 +

∑
E∈Ef

ΠE
0 u2 +

∑
T∈T

u3|T . (11)

is stable in the ‖ · ‖A-norm.
For any edge E or triangle T , we can find a vertex V , such that the

corresponding summand is in VV . Since for each vertex only finitely many
terms appear, we can use the triangle inequality and finally arrive at the
missing spectral bound

〈Cu, u〉 = inf
u=u0+

P
V uV

u0∈V0,uV ∈VV

‖u0‖2
A +

∑
V

‖uV ‖2
A � 〈Au, u〉 .

4 Sub-space splitting for tetrahedra

Most of the proof for the 3D case follows the strategy introduced in Section 3,
so we use the definitions thereof. The only principal difference is the edge
interpolation operator, which shall be treated in more detail.

4.1 Coarse and vertex contributions

We define the level surfaces of the vertex hat basis functions

ΓV (x) := ΓV (ϕV (x)) := {y : ϕV (y) = ϕV (x)}.

As in 2D, we first subtract the coarse grid function

u1 = u−Πhu,

and secondly the multi-dimensional vertex interpolant to obtain

u2 = u1 −ΠVu1,

where the definitions of ΠV , ΠV
0 , ΠV are the same as in Section 3, only

the level set lines γV are replaced by the level surfaces ΓV . With the same
arguments, one easily shows that∑

v∈Vf

‖ΠV
0 u1‖2

A + ‖∇u2‖2
L2

+ ‖r−1
V u2‖2

L2
� ‖u‖2

A. (12)

4.2 Edge contributions

Let F := {(s, t) : s ≥ 0, t ≥ 0, s+ t ≤ 1} be the reference triangle in Figure 3.
For (s, t) ∈ F , we define the level lines
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ER

1

1 

s

t

0

F

Fig. 3. Reference triangle

γ

x

E(0,0)

γ (x)E

E

VE,1

VE,2

Fig. 4. Edge patch

γE(s, t) := {x : ϕVE,1 (x) = s and ϕVE,2 (x) = t},

and write
γE(x) := γE(ϕVE,1 (x), ϕVE,2 (x))

for the level line corresponding to a point x in the edge-patch ωE , see Figure 4.
Define the space of constant functions on these level lines,

SE := {v : v|γE(x) = const}

and its polynomial subspace SE,p :=
Sγ γ
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The proof is analogous to the proofs of Lemma 2 and Lemma 3.

Next, the edge-interpolation operator is modified to satisfy zero boundary
conditions on ∂ωE . By the isomorphism

vF (s, t) := v|γE(s,t), for v ∈ SE , (13)

the function space SE can be identified with a space on the triangle F .

Lemma 7. The isomorphism (13) fulfills the following equivalences for func-
tions v ∈ SE:

(i)
‖v‖L2(ωE) ' h3/2 ‖r1/2

ERvF ‖L2(F ),

(ii)
‖∇v‖L2(ωE) ' h1/2 ‖r1/2

ER∇vF ‖L2(F ),

(iii)

‖r−1
VE
v‖L2(ωE) ' h1/2

∥∥∥∥ r
1/2
ER

rV
ER

vF

∥∥∥∥
L2(F )

,

(iv)
‖r−1
E v‖L2(ωE) ' h1/2 ‖r−1/2

ER vF ‖L2(F ),

where

ER := {(s, t) ∈ F : s+ t = 1},

rER(s, t) := 1− s− t, and (rVER )−1 := 1
1−s + 1

1−t .

Proof. We parameterize the edge-patch ωE by

FE : γE(0, 0)× F → ωE

(z, (s, t)) 7→ z + s(VE,1 − z) + t(VE,2 − z).

Note that functions v ∈ SE do not depend on the parameter z ∈ γE(0, 0) and
vF (s, t) = (v ◦ FE)(z, s, t) for any z ∈ γE(0, 0). Equivalence (i) holds due to
the transformation of the integrals∫

ωE

|v|2 dx ' h2

∫
γE(0,0)

∫ 1

0

∫ 1−s

0

|v ◦ FE |2(1− s− t) dt ds dz

' h3

∫
F

|vF |2 rER d(s, t).

Derivatives evaluate to ∂vF
∂s = (∇v) · ∂FE∂s = (∇v) · (VE,1 − z), and thus

|(∇v) ◦ FE | ' h−1|∇vF |.

In combination with (i), we have proven (ii). Finally, equivalences (iii) and
(iv) follow from rVE ◦ FE ' h rVER .
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We now modify the function

uF (s, t) := (ΠEu2)|γE(s,t) (14)

to obtain a function uF,00 which satisfies zero boundary conditions on the
edges s = 0 and t = 0, and coincides with uF on the edge s + t = 1. This
modification is done in such a way that it is continuous in the weighted H1-
norm.

(s,t)

Fig. 5.
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First, we prove the corresponding estimates for the smoothing operator
Ss. We observe that derivatives of Ssv depend on derivatives of v, only:

∂(Ssv)
∂s

=
∫ 1

0

(∇v) ·
(
1− τ

2
, 0
)
dτ,

∂(Ssv)
∂t

=
∫ 1

0

(∇v) ·
(
− τ

2
, 1
)
dτ.

Since rER is bounded from below and from above on the averaging line
[(s, t); (s + 1

2 (1 − s − t), t)], the smoothing operator Ss is bounded in the
weighted H1-semi-norm. The approximation property corresponding to the
weighted L2-norm follows from Friedrichs’ inequality applied on the same
line.

Now, we prove the estimates for the correction Ss,0 − Ss. The first is∥∥∥r1/2

ER∇
[

1−s−t

1−t
(Ssv)(0, t)

]∥∥∥
L2(F )

≤
∥∥∥r1/2

ER

( −1

1−t
,
−s

(1−t)2

)
(Ssv)(0, t)

∥∥∥
L2(F )

+
∥∥∥r1/2

ER

1−s−t

1−t
∇(Ssv)(0, t)

∥∥∥
L2(F )

�
∥∥(1− t)−1/2(Ssv)(0, t)

∥∥
L2(F )

+
∥∥(1− t)1/2 ∂(Ssv)

∂t
(0, t)

∥∥
L2(F )

=
∥∥(Ssv
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0

(1− t)2
[∂(Ssv)

∂t
(0, t)

]2

dt =
∫ 1

0

(1− t)2
[ ∫ 1

0

(∇v) · (−τ/2, 1)T dτ
]2

dt

�
∫ 1

0

(1− t)2

∫ 1

0

∣∣∣∇v(1− t
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Theorem 4. The decomposition

u2 =
∑
E∈Ef

ΠE
0 u2 + u3 (18)

fulfills the stability estimate∑
E∈Ef

‖ΠE
0 u2‖2

A + ‖∇u3‖2 + ‖r−1
E u3‖2 � ‖∇u2‖2 + ‖r−1

V u2‖2. (19)

Moreover, u3 = 0 on
⋃
E∈Ef E.

Proof. The result is an immediate consequence of Lemma 6, Lemma 8 and
Lemma 9 using the argument of finite summation.

4.3 Main result

Proof (Proof of Theorem 1 for the case of tetrahedra). The interpolation on
faces in 3D and its analysis follows the line of the edge interpolation in 2D,
see Section 3.3.

Summarizing, we obtain

u1 = u−Πhu, u2 = u1 −
∑
V ∈Vf

ΠV
0 u1,

u3 = u2 −
∑
E∈Ef

ΠE
0 u2, u4 = u3 −

∑
F∈Ff

ΠF
0 u3,

where Ff = {F ∈ F : F 6⊂ ΓD}. As a consequence of the last subsections, the
decomposition

u = Πhu+
∑
V ∈Vf

ΠV
0 u1 +

∑
E∈Ef

ΠE
0 u2 +

∑
F∈Ff

ΠF
0 u3 +

∑
T∈T

u4|T (20)

is stable in the ‖ · ‖A-norm.

5 Numerical results

In this section, we show numerical experiments on model problems to verify
the theory elaborated in the last sections and to get the absolute condition
numbers hidden in the generic constants. Furthermore, we study two more
preconditioners.

We consider the H1(Ω) inner product

A(u, v) = (∇u,∇v)L2 + (u, v)L2
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on the unit cube Ω = (0, 1)3, which is subdivided into 69 tetrahedra, see
Figure 6. We vary the polynomial order p from 2 up to 10. The condition
numbers of the preconditioned systems are computed by the Lanczos method.

Example 1: The preconditioner is defined by the space-decomposition
with big overlap of Theorem 1:

V = V0 +
∑
V ∈V

VV

The condition number is proven to be independent of h and p. The computed
numbers are drawn in Figure 7, labeled ’overlapping V’. The inner unknowns
have been eliminated by static condensation. The memory requirement of this
preconditioner is considerable: For p
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V = V0 +
∑
V ∈V

span{ϕl.e.V }+
∑
E∈E

VE .

The computed values are drawn in Figure 7, labeled ’overlapping E, low energy
V’, and show a moderate growth in p. Low energy vertex basis functions ob-
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