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Abstract

In recent years upwind di�erencing has gained acceptance as a ro�

bust and accurate technique for the numerical approximation of the one�

dimensional shallow water equations� In two dimensions the bene�ts have

been less marked due to the reliance of the methods on standard oper�

ator splitting techniques� Two conservative genuinely multidimensional

upwind schemes are presented which have been adapted from �ux balance

distribution methods recently proposed for the approximation of steady

state solutions of the Euler equations on unstructured triangular grids� A

method for dealing with source terms� such as those introduced by mod�

elling bed slope and friction� is also suggested and results are presented for

two�dimensional steady state channel �ows to illustrate the accuracy and

robustness of the new algorithms�

	



� Introduction

In recent years� many advances have been made in the numerical solution of

hyperbolic systems of conservation laws in one and more dimensions ��� �� ��

Of particular interest has been the prediction of discontinuous solutions to the

equations� which can occur when the system is nonlinear�

In the case of the numerical solution of the shallow water equations traditional

methods� such as those of Preissmann� Abbott �
� and McCormack ��� rely on cen�

tral di�erencing and are well known to require special treatment before a realistic

numerical approximation of discontinuous �ows can be obtained� More recently�

the concept of upwinding has been adopted from the �eld of gas dynamics for the

modelling of shallow water �ows �� 	�� This has proved to be highly successful�

particularly in one dimension� in which high order upwind schemes have been

constructed which capture discontinuities sharply and smoothly� This is achieved

without the addition of arti�cial viscosity which is normally required to stabilise

central di�erence schemes in the vicinity of high �ow gradients� Furthermore� the

upwind discretisation arises naturally from the physical interpretation of hyper�

bolic systems of equations� also giving a framework in which boundary conditions

can be applied easily� The upwinding approach is therefore ideal for the modelling

of transcritical and supercritical �ows�

The practical advantages of upwind schemes in higher dimensions are less

clear� Historically� they have been applied to the two�dimensional shallow water

equations via the use of standard operator splitting techniques� e�g� �	�� which

by implication involves the application of one�dimensional methods to a multi�

dimensional system of equations� albeit in two independent directions� Recently

�





In this paper a conservative formulation is presented� together with two alterna�

tive decompositions of the system of shallow water equations and a method of

incorporating source terms such as those arising from the consideration of bed

slope and friction� Results are presented to illustrate the quality of the numerical

solutions obtained for steady state problems�

� The Governing Equations

The shallow water equations can be used to describe the motion of �shallow� free�



are the conservative variables and the corresponding �ux v



and

BU �
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in which c �
p
gh is the gravity wave speed or wave celerity� Further details

about the mathematical aspects of the shallow water equations can be found in

��	��

� A Conservative Linearisation

An appropriate linearisation of the shallow water equations is required so that the

decomposition and distribution stages of the algorithm give rise to a conservative

scheme� Many di�erent conservative linearisations have been constructed for the

Euler equations� see for example ��� ��� but it is the most robust of these� based on

Roe�s one�dimensional linearisation using a set of parameter vector variables ����

which is generally used for practical calculations� This linearisation is adapted

here to give an analogous discrete form of the shallow water equations�

Consider the two�dimensional homogeneous system�

Ut � Fx �Gy � � � �	��

in which the conservative variables U and �uxes F� G are given by ����� and ���	�

respectively� For a given cell in a triangular discretisation of the computational

domain the �ux balance is de�ned by

�U � �
Z Z

�

�
Fx �Gy

�
dxdy

�
I
��
�F � G� � d�n � �	���

�



in which d�n represents the inward pointing normal to the cell boundary� The

numerical appro



by assuming that the components of the parameter vector

Z �
p
h

�BBBBBBBB�



u

v

�CCCCCCCCA
�	�
�

vary linearly in space within each cell� cf� Roe�s parameter vector for the Euler



�	��� ���� The nonlinear terms in �	��� and �	��� mean that the linearisation of

the shallow water equations cannot be constructed in precisely the same manner�

In previous work ��� �� non�conservative linearisations have been used� in which

the �ux balance �	�	� is evaluated consistently from an appropriate average state�

but in the present work a conservative form is sought�

A conservative linearisation of the shallow water equations is achieved by

evaluating the integrals in �	��� exactly� This does not immediately give rise to

linearised �ux Jacobians of the form �	���� so instead a component of �	��� is

isolated which does have this form and which therefore can be decomposed using

the second stage of the algorithm� described in Section �� Hence the numerical

�ux balance �	�	� is split into two parts� taking the form

d�U � � S�

�
�F

�Z
Zx �

�G

�Z
Zy

�
� 	z 


���

� S�
�
SZ Zx �TZ Zy

�
� 	z 


���

� �	���

The overbar indicates the consistent evaluation of a quantity solely from the

cell�average state given by

Z �


	

�X
i��

Zi � �	���

as well as the corresponding discrete gradient �evaluated under the assumption

of linearly varying Z�



variables since

�U

�Z
�

�BBBBBBBB�

�
p
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p
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p
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p
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p
h

�CCCCCCCCA
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is linear in the components of Z� It then follows that the discrete gradient of the

conservative v





ly decoupled� The corresponding analysis of the shallow water equations closely

follows that of ��� �� �
� and the resulting preconditioners are described here�

For the sake of simplifying the algebra� the homogeneous part of the sys�

tem ���� is considered in terms of the streamwise variables� � and �� and the

symmetrising variables Q� de�ned by

�Q �

�BBBBBBBB�

c
h
�h

�q

q ��

�CCCCCCCCA
� ����

where q �
p
u� � v� is the speed of the �ow and � � tan��

�
v
u

�
its direction� The

symmetrised form of the shallow water equations are now preconditioned by a

matrix P� and the resulting system written in the form

Q
t
�P

�
AS

QQ

t
A

S
Q



��� Decomposition � �HELW�

Following the analysis of Mesaros and Roe for the Euler equations ���� the �rst

preconditioning matrix suggested here is given by

P �


q

�BBBBBBBB�

�F �

��
� �F

��
�

� �F
��

�
��
� 	 �

� � �

�

�CCCCCCCCA
� �����

where F � q

c
is the local Froude number of the �ow�


 �
q
jF �� j � � � max�F� � ���
�

and 	 is a function of the Froude number such that 	��� � �
�
and 	�F � �  for

F � � These restrictions on 	 ensure that the decomposition is not sensitive

to the �ow angle in the limit as F � � ���� and that the transition of the

preconditioner through the transcritical region is smooth� Here� as in ���� 	 is

taken to be the C� function

	�F � �

������������������

�
�

for F � �
�

���F � � ��
�
F � � �F � 	 for �

�
� F � �

�

 for F � �
�

�����

so that the �rst derivative also varies smoothly� The matrix P in ����� is� in fact�

precisely that of ���� with the Mach number replaced by the Froude number and

without the involvement of the entropy equation� The variable � has simply been

introduced so that ����� is correct for both subcritical and supercritical �ow�

The preconditioned system ����� is decomposed by transforming it into a set

of characteristic equations�

Wt �AS
WW� �BS

WW� � � � �����






where the characteristic variables W are de�ned by

�Wsb �

�BBBBBBBB�

g�

q
�h

q ��

g

c
�h� F �q

�CCCCCCCCA
and �Wsp �

�BBBBBBBB�

g�

c
�h� Fq ��

g�

c
�h� Fq ��

g

c
�h� F �q

�CCCCCCCCA
� �����

for subcritical and supercritical �ow respectively� The corresponding transforma�

tion matrices are given by

�Wsb

�Q
�

�BBBBBBBB�

�

F
� �

� � 

 F �

�CCCCCCCCA
and

�Wsp

�Q
�

�BBBBBBBB�


 � F


 � �F

 F �

�CCCCCCCCA
�����

and their inverses� and the resulting characteristic �ux Jacobian matrices can be

calculated easily using

AS
W �

�W

�Q
PAS

Q

�Q

�W
and BS

W �
�W

�Q
PBS

Q

�Q

�W
�����

for both subcritical and supercritical �ows�

Note that the choice of variables given by ����� changes across the transcritical

region� When the �ow is supercritical the steady equations are hyperbolic and

the choice of variables de�ned by �Wsp in ����� uniquely leads to the system

being completely decoupled into scalar components� However� in the subcritical

case only one equation can be decoupled� leaving a second component which

manifests itself as a � � � elliptic subsystem� the form of which depends on the

choice of characteristic variables� de�ned here by �Wsb in ������ The shallow

water equations cannot be decoupled further in subcritical �ow�

The complete decoupling of the equations in supercritical �ow allows the sys�

�



tem ����� to be written in the form of three scalar advection equations� i�e�

Wk
t � �kS � �rSW

k � � � k � � �� 	� ����

in which the advection velocities in the streamwise coordinate system are

��S �

�BBB�
�

F

�
F

�CCCA
S

� ��S �

�BBB�
�

F

� �
F

�CCCA
S

and ��S �

�BBB� 
�

�CCCA
S

� �����

Hence the �rst component of the �ux balance in �	��� takes the form

�U � �S�

�X
k��

�
�kS � �rSW

k
�
rkU � ���	�

where every term on the right hand side of ���	� is evaluated consistently from

the cell�average state de�ned by �	��� and �	��� and rkU is the k
th column of

the matrix

RU �
�U

�Q
P��

�Q

�W
� �����

This matrix transforms the components of the �ux balance corresponding to the

characteristic equations back into components of the conservative �ux balance�

Hence ���	� represents a consistent decomposition of �U of �	���� the compo�

nents of which may each be distributed using a simple scalar scheme such as that

described in Section 
� below�

In the case of subcritical �ow the choice of characteristic variables de�ned by

�Wsb in ����� leads to Jacobian matrices in the system ����� given by

AS
W �

�BBBBBBBB�

�	
 � �

� 
 �

� � 	

�CCCCCCCCA
and BS

W �

�BBBBBBBB�

� 	 �

 � �

� � �

�CCCCCCCCA
� ���
�

�



Hence the characteristic equations take the form of a single scalar advection

equation� which is precisely the same as the k � 	 equation de�ned by ���� and

������ together with a �� � elliptic subsystem� so �U of �	��� is written

�U � �S�
�
r�U� r

�
U

�
������
�BBB� �	
 �

� 


�CCCA
�BBB� W

�

W�

�CCCA
�

�

�BBB� � 	

 �

�CCCA
�BBB� W

�

W�

�CCCA
�

������
�S�

�
��S � �rSW

�
�
r

U

S



��� and takes the form

P �


q

�BBBBBBBB�

�F �

��
� � �F

��
� �

� �F

��
�

�

��
� �  �

� � �

�CCCCCCCCA
� �����

where


	 �
q
max � ��� jF � � j � � � �


	

max�F� �
�����

and � is a nonzero constant which typically takes a value of ���
� This matrix

is again derived by following the analysis of the Euler equations ��
�� the result

being that the Mach number is replaced by the Froude number and the entropy

equation disappears�

The decoupling of the system proceeds as in the previous decomposition� lead�

ing to a set of characteristic equations ����� in new variables W� now de�ned by

�W �

�BBBBBBBB�

g��
c
�h� Fq ��

g��
c
�h� Fq ��

g

c
�h� F �q

�CCCCCCCCA
� �����

independent of the �ow speed� cf� ������ The corresponding transformation matrix

is given by
�Wsp

�Q in ������

The di�erence between the two decompositions lies in the treatment of the

system for subcritical and transcritical �ows �F � �  � ���� The decision to keep

the same characteristic variables in both subcritical and supercritical �ow leads

to Jacobian matrices in the transformed system ����� which are given by

AS
W �

�BBBBBBBB�

��� ��� �

��� ��� �

� � 

�CCCCCCCCA
and BS

W �

�BBBBBBBB�

�

��
� �

� � �

��
�

� � �

�CCCCCCCCA
� ������

�



where

�� �
F � �  � 
	

�

�
	
� and �� �

F � � � 
	
�

�
	
� � �����

It is easy to see that in the supercritical region �� � �� the system is complete�

ly decoupled� and the decomposition �and subsequent distribution� reduces to

precisely that given for supercritical �ow in Section ���

In the subcritical case the system is again decomposed into a single� indepen�

dent scalar component and a pair of coupled equations� but rather than regarding

the latter as a � � � subsystem it is instead treated as in ���� as two separate

scalar equations with source terms� As a consequence� the decomposition of �U

of �	��� takes the form

�U � �S�

�X
k��

�
�kS � �rSW

k � qkS

�
rkU � ������

in which rkU is the k
th column of the matrix RU ������ newly de�ned from the P

of ����� and the W of ������

��S �

�BBB� ���

�

��

�CCCA
S

� ��S �

�BBB� ���

� �

��

�CCCA
S

and ��S �

�BBB� 
�

�CCCA
S

� ����	�

and

q�S � ���W�
� � q�S � ���W�

� and q�S � � � ������

The distribution of the decoupled component of this second decomposition is

once again carried out using the scalar upwind scheme of Section 
� below� It

is possible to use the same method for the coupled components� with an appro�

priate modi�cation �described in Section 
��� to ensure that the scheme remains

linearity preserving ��� in the presence of source terms� However positivity is

lost as a consequence� so when the Froude number is close to unity and the ad�

vection velocities associated with each componen



very closely aligned� the distribution provides very little cross�stream di�usion

and as a result lacks robustness� The actual scalar scheme used here is the SUPG

scheme suggested in ��� and described at the end of Section 
��� As in Section

��(ed)62 0 TD
[-ion



state solutions of �
�� are calculated by repeating this update iteratively in order

to approximate the solution in the limit as t���

The vector � in �
��� may not be constant� in which case a conservative

linearisation of the scalar advection equation �
�� can often be constructed by

treating it as a special case of the system linearisation discussed in Section 	 ����



to a nodal update of the form

un��i � uni �
 t

Si

X
��i

�
j
i�j � �
���

where Si is the area of the median dual cell for node i �one third of the total

area of the triangles with a vertex at i�� �j
i is the distribution coe�cient which

indicates the proportion of the �uctuation �j to be sent from cell j to node i� and

	�i represents the set of cells with vertices at node i� It can be seen from the

second expression for �



� Linearity preservation � the exact steady state solution is preserved when

this varies linearly in space� so no update is sent to the nodes when a cell

�uctuation is zero and the scheme is second order accurate at the steady

state on a regular mesh with a uniform choice of diagonals ����

� Continuity � the contributions to the nodes� �j
i�j �
���� depend continu�

ously on the data� avoiding limit cycling as convergence is approached and

improving the robustness of the scheme�

Linearity preservation should also be satis�ed by the decomposition� so that no

update is sent to the vertices of a cell when its �ux balance is zero and the higher

order accuracy possessed by the linearity preserving scalar scheme is retained by

the overall algorithm� The property is obviously satis�ed by the two decompo�

sitions described here because the columns of the matrix RU ����� are linearly

independent�

A simple distribution scheme with all of the above properties is the so�called

PSI scheme ���� It is most easily described by considering a single triangular

cell in isolation� If� according to the linearised advection velocity�
b� of �
�
�� the

triangle has a single downstream vertex� at node i say� then that node receives

the whole �uctuation� so

un��i � uni �
 t

Si

b� � �
���

while the values of u at the other two vertices remain unchanged� In the case

of a triangle with two downstream vertices� at nodes i and j for example� the

�uctuation is divided bettributeme tv



�uctuation can therefore be written

un��i � uni �
 t

Si

��i �

un��j � unj �
 t

Sj

��j � �
���

where ��i � ��j �
b� for conservation� In the PSI scheme ����

��i � �i � L��i���j�

��j � �j � L��j���i� � �
���

where

�i � �
�

b� � �ni �u
n
i � unk� � �j � �

�

b� � �nj �u
n
j � unk� � �
��

and L denotes the minmod limiter function�

L�x� y� �


�
� � sgn�xy��



�
�sgn�x� � sgn�y�� min�jxj� jyj� � �
���

The PSI scheme is positive for a restriction on the time�step at a node i given by

 t � SiP
��i
max��� �

�

b�j � �nj
i �

� �
�	�

and is used in the overall algorithm for the distribution of the homogeneous scalar

components which arise from the decompositions of Section ��

��� Distribution of Coupled Components�Subsystems

The elliptic nature of the � � � subsystem which results from the decomposi�

tion of the shallow water equations in subcritical �ow suggests that an upwind

distribution strategy is less appropriate than for the scalar components� Two

schemes are described here for the distribution of this component� one for each

decomposition� following the di�erent distributions suggested for the correspond�

ing decompositions of the Euler equations ��� ���

�




In the �rst decomposition �HELW� the two coupled equations are modelled

by the system

u



The second approach �HESUPG� equates the coupled subsystem with a pair

of scalar advection equations with source terms of the form

ut � � � �ru � q � �
����

in which u� � and q are de�ned by the �rst two entries in ������ ����	� and ������

respectively� In ��� the quantity

c�q � �S� �b� �d�ru� bq� � �
���

is distributed for each of the two equations using a scheme which is equivalent to

a mass�lumped streamline upwind Petrov�Galerkin �SUPG� �nite element scheme

with additional arti�cial viscosity ����

The distribution coe�cients for this linearity preserving and continuous but

non�positive scheme are given by

�j
i �



	
� �

� � �ni

�S�j

� �
�ru � �ni

�S�j

� �
����

in which

� � C�
h

j�j � � � C�
h sgn� b��
j�ruj� h

� �
��	�

The constants C� and C� are both taken to be ��
 �	�� h is a typical local length

scale� e�g� the length of the longest edge of the cell� and b� is de�ned in �
�	�� This
scheme is used here for the distribution of the coupled equations which result

from the subcritical HESUPG decomposition�

� Source Terms

Source terms appear in the linearised shallow water equations both as a result

of modelling bed slope and friction ���� and from the linearisation �	���� and

��



these terms must be included in the updating of the solution�

The simplest method of treating the momentum sources� q in ����� is to

calculate them pointwise at each node and then add them to the conservative

variables once the �ux balance distribution has been completed� so

Un��
i � Un

i � �Ui � t qi � ����

in which �Un
i is the update indicated by the distribution of the decomposed �ux

balance� However� it is more appropriate to the schemes presented here for all of

the sources to be incorporated within the �ux balance distribution itself� This is

the obvious way to treat the linearisation source terms since they are inherently

cell�based quantities�

One way of achieving this is to include the source terms within the decompo�

sition� so the characteristic equations of ����� become

Wt �AS
WW� �BS

WW� � R��
U qtot � �����

where q
tot
is the sum of the momentumand linearisation source terms consistently

evaluated from the cell�average state Z� The two types of source term can be

considered separately but are combined here for simplicity�

The e�ect of q
tot
on the �ux balance distribution can be illustrated simply by

considering a scalar component of the decomposition� A characteristic equation

taken from ���� now has the form



A positive distribution scheme does not remain positive under this modi�cation

but the linearity preservation property is retained by calculating the distribution

coe�cients precisely as in the homogeneous case but then using them to distribute

the quantity c�q� The modi�ed updates are then transformed into increments of

the conservative variables using the matrixRU ����� as before� The source terms

which now appear in the elliptic subsystem can also be treated in this manner

for both the matrix and scalar distributions�

A third method of treating the source term q
tot
is to distribute it separately

from �U� and the simplest way to do this is via a symmetric distribution in which

one third of q
tot
within a cell is sent to each of its vertices� All three ways of

incorporating the source terms are considered in the following section�

� Results

Both algorithms described in the previous sections �HELW and HESUPG� have

been used to solve numerically a wide variety of steady state test cases for the two�

dimensional shallow water equations� In all cases the linearisation source terms

are distributed separately from the rest of the �ux balance by a simple central

scheme since this strategy proves to be more robust than an upwind distribution

and there is negligible di�erence between the results� The momentum sources�

when they appear� are distributed in an upwind manner as part of the �ux balance

for the purposes of accuracy� except when robustness becomes an issue in which

case they are considered separately and evaluated on a pointwise basis�

The boundary conditions are applied very simply by referring to the theory of

characteristics� This determines the num



which should be imposed at a chosen point on the boundary� One condition must

be applied for each positive eigenvalue of the matrix

CU � AU nx �BU ny � ����

where �n � �nx� ny�T is the inward pointing normal to the boundary of the com�

putational domain� In the case of the shallow water equations these eigenvalues

are given by

� � �u � �n � � � �u � �n� c and � � �u � �n� c � �����

Thus� when the component of the �ow normal to the boundary is supercritical

either the whole solution is speci�ed �at in�ow� or none of it �out�ow�� For

subcritical in�ow two conditions are speci�ed �total head and tangential velocity

component� while for subcritical out�ow a single piece of information� the depth

of the �ow� is set to a prespeci�ed freestream value� At a solid wall only � is

positive and this is accommodated by setting the normal velocity component to

zero�

	�� Oblique Hydraulic Jump

Few standard steady state test cases exist for the homogeneous two�dimensional

shallow water equations� but there are some simple problems for which exact

solutions have been calculated� One such example �	� is supercritical �ow through

a frictionless channel with a �at bed containing a wedge inclined at an angle �

to the direction of the �ow at which an oblique hydraulic jump is induced by

the interaction of the �ow with the front of the wedge� The angle 
 which this

	�
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Figure ���� Convergence history for the oblique hydraulic jump test case�

walls� This �gure also shows the local Froude number contours of the steady

state solution calculated for this test case �both the HELW and the HESUPG

schemes are the same for supercritical �ow�� The hydraulic jump can be seen to

be captured sharply at the correct angle and a discontinuous water surface devoid

of oscillations is obtained� The values of the �ow variables downstream of the

jump �sampled on the out�ow boundary at the point indicated by the asterisk in

Figure ��� are hd � �
��m and j�udj � ���
��ms�� �Fd � ����	�� very close to

the exact v



Euler equations� Neither technique is used here but it is expected that both could

be used to similar advantage�

Note that a CFL number of ��� has been used here but in the subsequent

test cases� all of which have regions of subcritical �ow� the CFL number is taken

to be ��� which proved to be the highest value which could be taken which was

stable for all of these cases� This seems to be because of the discontinuity in the

distribution at the critical line and the nonorthogonality of the eigenvectors of

the preconditioned system at low Froude numbers �described in more detail in

�����

	�� Symmetric Constricted Channel Flows

The domain for these test cases represents a channel of length � metres and width

 metre with bumps of the same shape and size in the centre of either wall of

the channel� The bumps are one metre in length and are de�ned such that the

breadth of the channel is given by

B � B	 � �Bh cos
�
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�
for jx� xcj � xl
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is completely subcritical and therefore symmetric about the centre of the con�





the subcritical elliptic subsystem would reduce the oscillations� but not without

smearing the discontinuity as well� Although the HESUPG scheme� with its

greater inherent numerical di�usion� does this automatically� neither treatment

is ideal and the modelling of transcritical �ows requires further consideration�

The results shown in Figure ��� illustrate the e�ect of the linearisation source

terms on the solution� The values of the breadth�averaged local Froude number

are plotted along the length of the channel for the HELW scheme� The small os�

cillations downstream of the jump are rendered almost invisible by the averaging

procedure and the solutions are very close to those produced by the HESUPG

scheme �not plotted here� although the latter predicts the one�dimensional dis�

continuity to be very slightly further upstream�

The numerical results shown are for a conservative and a non�conservative

formulation in which the linearisation sources are simply ignored� Close inspec�

tion reveals that the discontinuity is predicted to be about half a cell�s width

further downstream by the non�conservative scheme� On a grid in which the

cell edges are aligned with the discontinuity the discrepancy in jump position

between the conservative and non�conservative schemes can be as much as one

cell� The non�conservative formulation predicts the jump to be further away

from the exact position predicted by one�dimensional theory for an open channel

of varying width� the third solution shown in Figure ���� Thus it is important to

enforce conservation for precise positioning of the discontinuity even though an

adequate solution may be obtained in this case without conservation� Note also

that the averaged conservative numerical approximation passes from subcritical

to supercritical �ow at the centre of the channel �its narrowest point� as it should
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the breadth�averaged local Froude number predicted by the two upwind schemes

is shown in Figure ���� together with the exact solution� The three solutions are

almost indistinguishable and even the HELW scheme exhibits no small oscillations

on the subcritical side of the jump�

Both sets of results presented have been obtained using an upwind distribution

of momentum sources evaluated on a cell by cell basis� Close examination of the

solutions reveals that this method of treating these source terms leads to the

best approximation of the exact solution� although the di�erences would not be

visible in the �gure� It should be noted though that convergence to the steady

state is slightly better if the sources are incorporated at the nodal update stage�

indicating greater robustness� In actual fact none of the schemes con