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Abstract

Decomposing the mass and wind flelds in a data assimilation scheme into balanced and
unbalanced °ow is part of the process of deflning a covariance model. It is not uncommon to
assume that the dynamic balanced part of the °ow is approximated solely by the rotational
part of the wind, which is obtained from a Helmholtz decomposition of the horizontal mo-
mentum (with an associated balanced pressure being diagnostically inferred from a balance
equation, for example). The unbalanced °ow is then represented by the divergence and the
residual unbalanced pressure. The assumption that the rotational part of the momentum is a
good approximation to the total balanced °ow is only valid in certain regimes. We propose a
new approach that incorporates °ow regime dependence, where we assume that the balanced
part of the °ow is approximated instead by a linearised potential vorticity increment. We
show the beneflt of such a formulation in the context of shallow water equations deflned on
a hemisphere.

Keywords Potential Vorticity, Data Assimilation, Linearisation, Rossby-Haurwitz Waves,
Burger number, Incremental Variational.

1 Introduction

Lorenc (2003, x3(b)) points out that physical arguments are frequently used to select a set
of variables (so-called ‘control variables’ in Numerical Weather Prediction (NWP)) for use in
data assimilation schemes, which decompose atmospheric states into balanced and unbalanced
components. Such variables enable the background error covariances to be more readily applied
than would be the case if, for example, the usual model variables of momentum and pressure were
used. Most numerical weather centres that perform data assimilation represent the balanced
and unbalanced parts of the °ow in a simplifled, °ow independent fashion that assumes that
the balanced °ow is just the rotational part, with the associated balanced pressure fleld derived
using a linear balance equation. The ‘fast modes’ (i.e. the gravity wave activity) are represented
by the divergence and a residual unbalanced pressure. While it is true that the balanced °ow is
predominantly rotational, choosing the rotational wind as the ‘slow variable’ is only applicable in



process does not cost signiflcantly more computationally than at present, and this is an important
constraint in schemes that may involve solving complicated elliptic boundary value problems.

We propose to use a low order potential vorticity (PV) inversion scheme to select a set
of control variables that separate the balanced and unbalanced components of the °ow in a
more °ow dependent manner. We make the assumption that the potential vorticity contains the
balanced part of the °ow, and that the unbalanced °ow lies in the kernel of the PV operator (i.e.
that °ow with PV=0). McIntyre and Norton (2000) discuss various hierarchical approximations
to potential vorticity inversion on a hemisphere within a shallow water context. We propose a
PV inversion scheme that is similar to their flrst order direct inversion scheme, except that we
use the linear balance equation instead of Charney balance as our associated balance condition.
We also work with a linearisation of the potential vorticity because our scheme is designed to
work with incremental data assimilation schemes. Our PV inversion scheme is consistent with
the shallow water equations linearised about a resting state.

We discriminate between difierent °ow regimes by using the Burger number. This is a
measure of the stable stratiflcation of a °uid: when the Burger number is low, the height, or
depth, is an appropriate measure of the balanced component of the °ow; but when the Burger
number is high, the vorticity is the appropriate measure. Another way of saying this is to note
that the PV behaves like the reciprocal of the height at low Burger numbers and like the vorticity
at high Burger numbers. Therefore, in our application in data assimilation, the PV should be
a better representation of the balanced °ow where and when the Burger number is small, while
giving approximately similar results to the vorticity when the Burger number is large.

We present theoretical and numerical aspects of this PV inversion and show the beneflts of
such a scheme when compared to a scheme in which the balanced component is represented by
the rotational °ow. In section 2 we present the theoretical aspects, giving a rationale for using
potential vorticity within a shallow water context. We show how the relative contributions to
scaled potential vorticity perturbations vary with Burger number. In section 3 we state the
numerical method that is used and section 4 we present the numerical results.

2 Theory

2.1 Introduction

In this section we explain why we want to use a potential vorticity (PV) inversion scheme in
data assimilation to separate the key dynamical aspects of the °ow. Most operational centres
use just the rotational and divergent parts of the °ow for this purpose. It is our aim to show
that using a PV inversion scheme is a more consistent approach as it takes account of the regime
dependence of the °ow.

The flrst step is to establish the standard rationale for using the streamfunction ˆ, a scalar
quantity representing the rotational wind, as the key variable representing the dominant be-
haviour of the °ow. This is necessary in order to show that using PV inversion is an improvement
on the standard method.

We use the nonlinear shallow water equations on a sphere. Most meteorological textbooks (eg
Haltiner et al 1980) show that through a scale analysis, key non-dimensional numbers are found
whose values characterize the °ow. One such dimensional number is the Burger number. Cullen
(2002) showed that in a high Burger regime, the shallow water equations (SWE) approximate
a balanced model called 2D Euler in the asymptotic limit as the Burger number gets much
larger than unity. In this balanced model the absolute vorticity, a scalar quantity describing the
amount of rotational wind, is materially conserved by the °ow. If we are dealing with shallow
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water °ow in a regime where it behaves similarly to inviscid incompressible 2D Euler, it would
be sensible to approximate the dominant aspects of the shallow water °ow by a key variable
of the 2D Euler model, namely the streamfunction ˆ. This quantity can be diagnosed using a



where U is the characteristic velocity.
For the shallow water equations, in the asymptotic limit as the Burger number gets large,

Bu >> 1, where the Rossby number is kept small, Ro << 1, the typical spatial difierences
in depth become increasingly less important compared to the efiect of the characteristic depth
within equation (2). In this case, the continuity equation efiectively degenerates into a 2D
incompressibility condition. This enforces a non-divergent °ow described by incompressible 2D
Euler as

@v
@t

+ v ¢ rv + fk £ v + grh = 0; (5)

r ¢ v = 0: (6)

Taking the vertical component of the curl of the momentum equation (5) gives the barotropic
vorticity equation

@r2ˆ

@t
+ vˆ ¢ r (

f + r2ˆ
)

= 0; (7)

where vˆ is the rotational, non-divergent part of the wind and the streamfunction ˆ is deflned
by

r2ˆ = k ¢ r £ v:



achieved using a Helmholtz decomposition, which splits the horizontal wind into a rotational,
non-divergent part vˆ and a divergent, irrotational part v´ such that

v = vˆ + v´: (11)

The rotational winds are deflned through the streamfunction in the usual way by

vˆ = k £ rˆ:

Operational data assimilation systems separate the mass and wind into parts that approx-
imate the Rossby slow mode and two inertio-gravity modes. Most of these systems use the
Helmholtz decomposition to approximate the evolution of the streamfunction ˆ on each hor-
izontal level and hence, together with the linear balance equation, separate and identify the
mass-wind contribution to the slow Rossby mode. The separation is assumed to be accurate
across all Burger regimes.

2.6 Relationship of governing equations to semi-geostrophic shallow water
equations

In the shallow water context, the assumption that the streamfunction represents the slow mode
becomes increasingly less accurate as the Burger number becomes smaller, Bu << 1, while the
Rossby number remains small, Ro << 1. When the value of the Burger number is smaller than
unity it is more appropriate to choose semi-geostrophic shallow water equations as the reference
balanced model than inviscid incompressible 2D Euler. This is because it is a more accurate
approximation in this regime. The smaller the Burger number, the closer the behaviour of the
shallow water equations is to the semi-geostrophic shallow water equations. Further details of
the semi-geostrophic shallow water equations can be found in Cullen (2002). It is su–cient to
say that all the terms in the continuity equation are important and that this equation no longer
reduces into an incompressibility condition. For a small Burger number less than one, the depth
flelds produced by the standard shallow water equations and the semi-geostrophic shallow water
equations are similar, as are the qualitative features of semi-geostrophic and Ertel potential
vorticities. In contrast, the rotational wind aspects of the two models difier substantially.

2.7 Linearisation, linearisation states and the LB method

In data assimilation we are interested in an incremental linearised formulation. We deflne our
increments as the difierence between the full heights and linearisation states. In particular, the
height and wind increments are deflned by

h0 = h ¡ h;

v0 = v ¡ v;

where the prime variables denote increments and overlined variables represent linearisation
states. In this paper, due to limitations of the numerical method, the linearisation states h; u; v
are a function of latitude only. The way linearisation states are chosen depends on the situation,
but in all cases there is a consistency between the values given to the linearisation states.

The linear equations introduced prior to this section all hold both for increments and for
linearisation states, as well as for full flelds. In particular, equation (8) can be used to identify
ˆ0 from v0 and ˆ from v.
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The streamfunction increment can be considered to represent the balanced part of the in-
cremental °ow and the linear balance equation (10) can be used to flnd the balanced height
increment h0

b from the streamfunction increment ˆ0. This method for decomposing the °ow is
referred to here as the LB method. In summary we state the method as

1. calculate the streamfunction increment from the wind increments using equation (8) and
assume it is balanced, i.e. ˆ0

b = ˆ0



2.9 The PV method

The following coupled system of partial difierential equations (PDE)s, derived from (15) and
(10), deflnes our decomposition of the slow dynamics:

r ¢ frˆ0
b ¡ gr2h0

b = 0; (16)
r2ˆ0

b ¡ qh0
b = hq0; (17)

which we solve, simultaneously for ˆ0
b and h0

b, where q, h and q0 are known. The term hq0 is
precalculated from ˆ0 and h0 by just rearranging equation (15) as

hq0 = ¡qh0 + r2ˆ0: (18)

In addition, r2ˆ0 is obtained from the full wind increments v0 using the equation r2ˆ0 =
k ¢ (r £ v0).

The coupled system (16), (17) deflnes a balanced height increment h0
b and a balanced wind

increment, given by v0
b = k £ rˆ0

b. The balanced wind increment is non-divergent and ap-
proximates the full rotational wind increment for high Burger number regimes. The rest of the
rotational wind is described as having no potential vorticity increment and conserving a depar-
ture from linear balance. The unbalanced rotational wind can be obtained in one of two ways,
either by subtracting the balanced wind and height from the full rotational wind and height, or
by explicitly solving the simultaneous system

r ¢ frˆ0
ub ¡ gr2h0

ub = r ¢ frˆ0 ¡ gr2h0; (19)
r2ˆ0

ub ¡ qh0
ub = 0; (20)

where the unbalanced rotational wind is deflned to be v0
ub = k£rˆ0

ub. The unbalanced height is
denoted by h0

ub and again, on the right hand side, we use known full increments ˆ0 and h0. The
equivalence of the two methods to calculate the unbalanced height and unbalanced rotational
wind is readily seen by adding equation (16) to (19) and (17) to (20), to give

r ¢ fr (
ˆ0

b + ˆ0
ub

) ¡ gr2
(
h0

b + h0
ub

)
= r ¢ frˆ0 ¡ gr2h0; (21)

r2
(
ˆ0

b + ˆ0
ub

) ¡ q
(
h0

b + h0
ub

)
= hq0: (22)

The remaining wind increment, namely the divergent part v´
0, is stored in the velocity potential

´0; which is deflned as
r2´0 = r ¢ v0: (23)

´:=k



2.10 Dynamic dependence of linearised potential vorticity on Burger regime

It is now appropriate to describe the efiect of difierent Burger regimes on linearised potential
vorticity and linear balance increments. We consider properties of height, vorticity (the Lapla-
cian of the streamfunction) and potential vorticity increments that satisfy both the linearised
potential vorticity relationship (15) and the linear balance equation, (10) when the Coriolis term
is constant. It is valid to consider relative vorticity perturbations r2ˆ0 since the linear balance
equation (10) for constant f = f0 is equal to

gr2h0 = f0r2ˆ0: (24)

Let us assume that the height and vorticity perturbations are on a Cartesian grid for consis-
tency in assuming constant f and assume that these perturbations and the reference linearisation
states are known.

We use the relationship (24) between the perturbation in relative vorticity and the height to
derive a relationship between the potential vorticity perturbation and the height. We consider
perturbations in the height and the vorticity that take the form h0 = ĥei(k1x+k2y¡¾t), ‡ 0 =
r2ˆ0 = ‡̂ei(k1x+k2y¡¾t), where k1 is the wave number in the x direction, k2 is the wave number
in the y direction and ¾ is the frequency. Also, we assume that the perturbations satisfy (24).
Using these two assumptions,

r2ˆ0 = ¡(k2
1 + k2

2)gh0

f0
: (25)

If the characteristic length scale L is considered to be equal to (k2
1 + k2

1)¡ 1
2 , then the Burger

number is equal to (k2
1 + k2

1)
1
2 (gh)

1
2 =f , where the characteristic height scale H is considered

to be equal to h. By using (15), (25), two separate relationships can be determined (Wlasak,
2002): one deflnes scaled perturbations in potential vorticity in terms of scaled perturbations in
height; the other shows how perturbations in scaled relative vorticity perturbations are related
to scaled perturbations in potential vorticity. These relationships are given by

q0

q
= ¡N

h0

h

(
1 ¡ 1

N

)
q0

q
=

r2ˆ0

r2ˆ + f0

(26)

with

N = 1 +
f0 B2

u

f0 + r2ˆ
: (27)

As the Burger number is always greater than zero, for any given perturbation, N is always greater
than 1. For a flxed q0=q and N >> 1, h0=h will not contribute much to the scaled potential
vorticity perturbations; the potential vorticity perturbations are similar to the absolute vorticity
perturbations with q0=q … r2ˆ0=(f0 + r2ˆ). Moreover, the greater the value of N , the more
similar q0=q will be to r2ˆ0=(f0 + r2ˆ). The equation (27) shows that a number of conditions
can make N large. One possible way, assuming (f0 + r2ˆ) to be constant, is to produce a
large Burger number. A large Burger number will be obtained when h is large or when f0

is small. In summary, it is expected that for large Burger number q0=q will be dominated by
r2ˆ0=(f0 + r2ˆ).

The equations (26) and (27) can also be written as
(

1 ¡ 1
P

)
q0

q
= ¡h0

h

q0

q
= P

r2ˆ0

f0 + r2ˆ
(28)
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with

P = 1 +
f0 + r2ˆ

f0B2
u

:



We assume a solution of the form

h0
b(‚; `) =

k=M=2∑

k=¡M=2

h̃(k; `)eik‚; (30)

ˆ0
b(‚; `) =

k=M=2∑

k=¡M=2

˜̂(k; `)eik‚;

hq0(‚; `) =
k=M=2∑

k=¡M=2

h̃q0(k; `)eik‚;

with M being an even integer setting a truncation limit to the Fourier approximation, k the
wavenumber, and i =

p¡1. Since we have periodicity in the longitudinal direction, ‚ is discre-
tised as

‚j = ja

(
2…

M + 1

)
cos `; j = 1; :::; M + 1; (31)

where a is the radius of the earth. The Fourier coe–cients h̃(k; `), ˜̂(k; `), h̃q0(k; `) are complex.
Substitution of (30) into (16) and (17), produces a series of coupled systems of second order

ODEs in ` to be solved for variables h̃, ˜̂. The system is given for each k by

¡ k2

a2 cos2 `
[gh̃ + f ˜̂] +

g

a2 cos `

@

@`
[cos `

@h̃

@`
+ f cos `

@ ˜̂
@`

] = 0 (32)

¡ k2

a2 cos2 `
[ ˜̂] +

1
a2 cos `

@

@`
[cos `

@ ˜̂
@`

] ¡ qh̃ = h̃q0: (33)

In this situation, we have M +1 difierent complex coe–cients for h̃, ˜̂, h̃q0 which are all functions
of latitude ‚j and wave number k. Coe–cients h̃q0 are known and h̃, ˜̂ are to be determined.

The system (32)-(33) is to be solved for each wavenumber k considered. The beauty of the
separability of the coupled PDE’s is now apparent; since h, q, ˆ are functions of latitude only,
there is no interaction of wavenumber coe–cients and each system of ODEs for each wavenumber
is solved independently.

3.3 Boundary conditions

To solve this system we need h̃q0(k; `), which is derived by applying the Fourier transform to
the increment hq0(‚; `); given by (18). We obtain



used of the form,
∫

h̃bdS = 0; (36)

which is rewritten as
∫ …

2

¡ …
2

h̃b(0; `) cos `d` = 0: (37)

The global uniqueness condition applied to ˜̂,

∫ …
2

¡ …
2

˜̂
b(0; `) cos `d` = 0; (38)

is automatically satisfled due to the imposed anti-symmetric nature of the integrand. Once
(32)-(33) has been solved for all wavenumbers considered, we synthesise the complex coe–cients
using a discrete inverse Fourier transform.

3.4 Scaling

A scaling is introduced to make terms in the discretised operator of approximately the same
size. Scaling of equations is important so as to eliminate unnecessary sensitivity to numerical



Additional boundary conditions are applied to both variables. The streamfunction is assumed
to be a continuous smooth function and must be zero at the equator due to the balanced
streamfunction being anti-symmetric. At the equator, for k = 0; we do not solve the coupled
system as its stands but instead solve one equation in which the coupled equations have been
added together. This single equation at the equator is discretised using fourth order centered
difierences.

An antisymmetric solution about the equator in balanced streamfunction enforces a sym-
metric solution in balanced height hb and there is no need to enforce @hb

@` = 0. Instead a discrete
approximation to mass conservation is enforced, so that the balanced height fleld represents the
same mass as the full height increment difierence.

A unique solution is given, provided a compatibility condition is enforced on the full po-
tential vorticity increment such that the volume-weighted sum of the discrete increments hq0

over the sphere is equal to zero (Swarztrauber,1974). This is automatically achieved due to the
antisymmetric nature of the full potential vorticity increment.

4 Results

We investigate whether the PV method provides a better representation of balanced and unbal-
anced control variables than the LB method. If the coupled PV system is behaving properly,
then in high Burger regimes the balanced streamfunction increment ˆ0

b should be similar to
ˆ0. Similarly, at low Burger regimes the balanced height increment should resemble the full
height increment. We perform two sets of experiments: the flrst testing the PV and LB meth-
ods against a primarily balanced °ow deflned by the evolution of a Rossby-Haurwitz wave; the
second testing the methods with height and wind increments that are essentially unbalanced.

For the flrst set of experiments, appropriate height and wind flelds need to be generated
to test the coupled system. A global SWE model is run, using a Rossby-Haurwitz wave (RH
wave) as an initial condition. The RH wave is deflned in the Appendix through an analytic
expression and is used in standard test cases as an initial condition for testing global SWE models
(Williamson et al, 1992). It has the property that the wind pattern is advected meridionally
at a constant angular velocity on the sphere when propagated under incompressible 2D Euler
equations. When used in the SWE context such behavior occurs in a regime where Bu >> 1,
the characteristic height H is large and there is little divergent wind. The deflning parameters
of the wave are given by the wavenumber R



The PV method produces both balanced height and streamfunction increments. Figure 1
compares the balanced streamfunction to the respective full fleld over the area (



Figure 3: Balanced ˆ (left) and full ˆ (right)for RH wave propagated 1 day at low Burger
number, with (` 2 […=2; ¡…=2]) £ (‚ 2 [0; …=2]) (scale denotes grid points)
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Figure 4: Balanced height (left) and full height (right) for RH wave propagated 1 day at low
Burger number, with (` 2 […=2; ¡…=2]) £ (‚ 2 [0; …=2]) (scale denotes grid points)
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produced by a potential vorticity conserving initialisation scheme and subtracting them from the
corresponding uninitialised fleld. The uninitialised fleld is obtained from a spherical harmonic
description of the observed flelds at T106 resolution from a NETCDF flle V DG7:13:cdf , kept
at NCAR and found in ftp : ==ftp:cgd:ucar:edu=pub=jet=shallow=nminit=. This experiment
shows the strengths and weaknesses of the control variables that we have developed.

Figure 5 shows the height and wind increments used to test the control variables. A stere-
ographic projection is used centred on the North Pole. The increments are composed of many
difierent waves on a wide range of length scales. The wind increments are typically between
¡8ms¡1 and 8ms¡1 and the height increments vary between ¡60m and 60m. It is also clear
from the flgure that there is great variability in the °ow with waves of both short and long
wavelengths present.

If the initialisation is perfect then the increments consist of just the unbalanced °ow. A
perfect set of control variables would apportion the °ow into the two unbalanced variables.



Figure 5: (Top) U and V wind increments produced using test case INI7C, (bottom right)
height increment using test case INI7C, (bottom left) U fleld linearisation state



Figure 7: (Top left) Height increment produced using test case INI7C . (Top right) balanced
height increment produced by LB method. (Bottom left) Balanced height increment using PV
method at low Bu. (Bottom right) Balanced height increment using PV method at high Bu

Figure 8: Balanced wind increments produced by using the LB and PV methods at high Bu
(mean height H … 11km)
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5 Conclusions

We propose a new PV-based approach to the separation of balanced and unbalanced °ow that
incorporates °ow regime dependence. The beneflts of this approach are demonstrated theoreti-
cally and experimentally in the context of the shallow water equations. The results concur with
flndings produced by Cullen (2003) in which a similar technique was applied in a dimensional
context to the reformulation of the background error covariance within a four-dimensional data
assimilation system. Although Cullen’s method had di–culties in dealing with spurious modes
produced by the vertical-staggered Lorenz grid used at ECMWF at the time, the flndings from
both studies are encouraging.

As shown here, the PV-based method at high Burger number produces control variables
that are similar to those produced by the customary streamfunction-constrained LB method.
At low Burger number the PV method produces control variables in which the full height
increments/perturbations dictate the balanced height and wind flelds. A di–culty arises in
using a linearised potential vorticity increment at very low Burger number. The smaller the
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