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Abstract

Four-dimensional variational data assimilation (4D-Var) combines the information from
a time-sequence of observations with the model dynamics and a background state to
produce an analysis. In this paper, a new mathematical insight into the behaviour of
4D-Var is gained from an extension of concepts that are used to assess the qualitative
information content of observations in satellite retrievals. It is shown that the 4D-Var
analysis increments can be written as a linear combination of the singular vectors of a
matrix which is a function of both the observational and the forecast model systems.

This formulation is used to consider the filtering and interpolating properties of 4D-Var
using idealized case-studies with a simple model of baroclinic instability. The results of
the 4D-Var case-studies exhibit the reconstruction of the state in unobserved regions, as
a consequence of the interpolation of observations through time. The results also exhibit
the filtering of components with small spatial scales that correspond to noise, and the
filtering of structures in unobserved regions.

The singular vector perspective gives a very clear view of this filtering and interpolating by
the 4D-Var algorithm and shows that the appropriate specification of the a priori statistics
is vital to extract the maximal amount of useful information from the observations.
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1 Introduction

In weather forecasting, data assimilation is used to genera





is known in control theory as the observability matrix (Zou et al.



using the notation ‖z‖2
2 = zT z, and where d̂ = ŷ − Ĥxb is the generalized innovation vector.

ρ
−1/2

R is the symmetric square root of ρ
−1
R



factors damp all the contributions to the analysis increment which have small singular values,
λj , as:

fj



Experiment µ2
actual µ2

specified lactual(km) lspecified(km) Note

1 1 1 1000 1000
2 1 1 1000 200
3 1 4 × 10−3 1000 1000
4 1 4 × 10−3 1000 1000 different random seed for ε

o

5 4 × 10−3 4 × 10−3 1000 1000
6 4 × 10−3 1 1000 1000

Table 1: Summary of the parameters used in the six 4D-Var experiments. µ2

actual = σ2

o/σ
2

b is the
actual variance ratio, µ2

specified is the variance ratio that is used by the 4D-Var algorithm, lactual is the
length-scale used to generate the background state, and lspecified is the length-scale used by the 4D-Var
algorithm. The parameter values are shown to an accuracy of one significant figure.

basic state are taken as control variables in the data assimilation, and the basic state flow is
assumed to be correct. The non-dimensional equations are now given.

The basic state is assumed to be dependent on the meridional direction, y, through a linear
temperature gradient. The perturbations are independent of y. The basic state is given
by a linear zonal wind shear with height, z, that is associated with the uniform meridional
temperature gradient in a domain between two rigid horizontal boundaries, z = ±1/2. The
density, static stability and Coriolis parameter are all taken to be constants. It is also assumed
that the interior quasi-geostrophic potential vorticity is zero.

The initial state is given by the perturbation buoyancy, b = b(x, z, t), on the boundaries,
z = ±1/2, at time t = 0. This is used to calculate the corresponding perturbation geostrophic
streamfunction, ψ = ψ(x, z, t), which satisfies:

∂2ψ

∂x2
+
∂2ψ

∂z2
= 0, in z ∈

[

−
1

2
,
1

2

]

x ∈ [0,X] . (10a)

From hydrostatic balance, the boundary conditions are:

∂ψ

∂z
= b, on z = ±

1

2
, x ∈ [0,X] . (10b)

Perturbations to the basic state are advected zonally by the basic shear flow as described by
the non-dimensional QG thermodynamic equation:

(

∂

∂t
+ z

∂

∂x

)

b =
∂ψ

∂x
, on z = ±

1

2
, x ∈ [0,X] . (10c)

The spatial boundary conditions are taken to be periodic such that at any time, t, and height,
z, b(0, z, t) = b(X, z, t) and ψ(0, z, t) = ψ(X, z, t).

The Eady model is discretized using 11 vertical levels for streamfunction. There are 20 grid
points in the horizontal, giving 40 degrees of freedom. The advection equations are discretized
using a leap-frog advection scheme, and the NAG routine known as nag-gen-lin-sys is used to
perform an LU factorization to solve the elliptic equation.
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Figure 1: Horizontal auto-correlation of the background state error for correlation length-scales l =
200km, 600km, and 1000km.

3.2.3 Background State.

The background state is defined by the true state with correlated random errors;

xb = xt
0 + ρ

1/2
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which acts to damp the RSVs with singular values comparable to or smaller than the
ratio of the standard deviation of the observational and background state errors.

• The 4D-Var algorithm optimally combines the information from the background state
and the observations. Observations are noisy and therefore it is important to specify
the appropriate background error correlations so that the algorithm is able to extract
the signal whilst filtering the noise. With a longer correlation length-scale, the RSVs
are re-ordered and the RSVs with small-scale structures have reduced singular values
and are thus more heavily damped by the filter factor; this gives a smoother analysis.

• If the specified variance ratio, µ2
specified, is smaller than the actual variance ratio, µ2

actual,
the algorithm draws too close to the observations so that the analysis contains unre-
alistic structures that have large amplitudes in the unobserved regions. From an SVD
perspective, the RSVs with small singular values have small-scale structures and large
amplitudes in the unobserved regions. The observational noise has a large projection
onto these RSVs, and therefore they dominate the solution unless they are filtered from
the solution through a value of µ2

specified greater than the square of their singular values.

• The specification of the variance ratio in the 4D-Var algorithm is critical so that all



errors is underestimated then useable information for the unobserved regions is rejected. If
it is overestimated, then false structures may be analysed, particularly in the unobserved
regions. To be able to maximize the benefits of 4D-Var, it is important to draw close to the
true state, but this may give poor analyses if the observations are inaccurate. Alternatively,
if the algorithm is tuned so that it does not draw so close to the observations, we can expect
the observational noise to be filtered, but may not benefit from the reconstructive ability of
4D-Var.
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